These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 30682863)

  • 1. Fatigue Life Assessment of Rolling Bearings Made from AISI 52100 Bearing Steel.
    Romanowicz PJ; Szybiński B
    Materials (Basel); 2019 Jan; 12(3):. PubMed ID: 30682863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of Mechanical Properties and Fatigue Life of Microturbine Angular Contact Ball Bearings under Eccentric Load Conditions.
    Wang H; Lv H; Luo Z
    Sensors (Basel); 2023 May; 23(9):. PubMed ID: 37177706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of Technological Heredity in the Production of Rolling Bearing Rings Made of AISI 52100 Steel Based on Waviness Measurements.
    Zmarzły P
    Materials (Basel); 2022 Jun; 15(11):. PubMed ID: 35683257
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-Dimensional Mathematical Wear Models of Vibration Generated by Rolling Ball Bearings Made of AISI 52100 Bearing Steel.
    Zmarzły P
    Materials (Basel); 2020 Nov; 13(23):. PubMed ID: 33260414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bearings Downsizing by Strength Enhancement and Service Life Extension.
    Amanov A; Darisuren S; Pyun YS
    Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30205576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Evolution of White Etching Cracks (WECs) in Rolling Contact Fatigue-Tested 100Cr6 Steel.
    Richardson AD; Evans MH; Wang L; Wood RJK; Ingram M; Meuth B
    Tribol Lett; 2018; 66(1):6. PubMed ID: 31983861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Simulation Analysis and Experimental Study on the Temperature Field of Four Row Rolling Bearings of Rolling Mill under Non-Uniform Load Conditions.
    Sun J; Guo H; Guo X; Ma C; Peng Y
    Sensors (Basel); 2024 Jan; 24(3):. PubMed ID: 38339631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Remaining Useful Life Prediction of Rolling Bearings Using GRU-DeepAR with Adaptive Failure Threshold.
    Li J; Wang Z; Liu X; Feng Z
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Method for Predicting RUL of Rolling Bearings under Different Operating Conditions Based on Transfer Learning and Few Labeled Data.
    Sun W; Wang H; Liu Z; Qu R
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal Desorption Analysis of Hydrogen in Non-hydrogen-Charged Rolling Contact Fatigue-Tested 100Cr6 Steel.
    Richardson AD; Evans MH; Wang L; Wood RJK; Ingram M
    Tribol Lett; 2018; 66(1):4. PubMed ID: 31983860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using the Effect of Compression Stress in Fatigue Analysis of the Roller Bearing for Bimodal Stress Histories.
    Romanowicz PJ; Smolarski D; Kozień MS
    Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Health Degradation Monitoring and Early Fault Diagnosis of a Rolling Bearing Based on CEEMDAN and Improved MMSE.
    Lv Y; Yuan R; Wang T; Li H; Song G
    Materials (Basel); 2018 Jun; 11(6):. PubMed ID: 29904002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Remaining Useful Life Prediction of Rolling Bearings Based on ECA-CAE and Autoformer.
    Zhong J; Li H; Chen Y; Huang C; Zhong S; Geng H
    Biomimetics (Basel); 2024 Jan; 9(1):. PubMed ID: 38248614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chaotic prediction of vibration performance degradation trend of rolling element bearing based on Weibull distribution.
    Cheng L; Xia X; Ye L
    Sci Prog; 2020; 103(1):36850419892194. PubMed ID: 31791201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multidimensional Study on the Wear of High-Speed, High-Temperature, Heavy-Load Bearings.
    Wang D; Yuan J; Hu L; Lyu B
    Materials (Basel); 2023 Mar; 16(7):. PubMed ID: 37049007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Early Fault Diagnosis of Bearings Using an Improved Spectral Kurtosis by Maximum Correlated Kurtosis Deconvolution.
    Jia F; Lei Y; Shan H; Lin J
    Sensors (Basel); 2015 Nov; 15(11):29363-77. PubMed ID: 26610501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Restoration of rolling-contact-fatigued surfaces via nanoskin technology.
    Pyun YS; Kim JH; Kayumov R; He Y; Shin KS
    J Nanosci Nanotechnol; 2013 Sep; 13(9):6371-5. PubMed ID: 24205664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of material defect orientation on rolling contact fatigue of a ball bearing.
    Ghazanfari Holagh A; Alizadeh Kaklar J
    Sci Rep; 2023 Sep; 13(1):15352. PubMed ID: 37717095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bearing remaining useful life prediction using support vector machine and hybrid degradation tracking model.
    Yan M; Wang X; Wang B; Chang M; Muhammad I
    ISA Trans; 2020 Mar; 98():471-482. PubMed ID: 31492470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Reliable Prognosis Approach for Degradation Evaluation of Rolling Bearing Using MCLSTM.
    Huang G; Li H; Ou J; Zhang Y; Zhang M
    Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32230874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.