These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 30682863)

  • 21. Rolling Bearing Performance Degradation Assessment with Adaptive Sensitive Feature Selection and Multi-Strategy Optimized SVDD.
    Feng Z; Wang Z; Liu X; Li J
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772165
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Intelligent Online Monitoring of Rolling Bearing: Diagnosis and Prognosis.
    Hotait H; Chiementin X; Rasolofondraibe L
    Entropy (Basel); 2021 Jun; 23(7):. PubMed ID: 34206610
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A novel model for low-cycle multiaxial fatigue life prediction based on the critical plane-damage parameter.
    Liu J; Lv X; Wei Y; Pan X; Jin Y; Wang Y
    Sci Prog; 2020; 103(3):36850420936220. PubMed ID: 32757872
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Static Load Characteristics of Hydrostatic Journal Bearings: Measurements and Predictions.
    Yi H; Jung H; Kim K; Ryu K
    Sensors (Basel); 2022 Oct; 22(19):. PubMed ID: 36236566
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multiaxial Fatigue Damage Parameter and Life Prediction without Any Additional Material Constants.
    Yu ZY; Zhu SP; Liu Q; Liu Y
    Materials (Basel); 2017 Aug; 10(8):. PubMed ID: 28792487
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A New Multiparameter Model for Multiaxial Fatigue Life Prediction of Rubber Materials.
    Tobajas R; Elduque D; Ibarz E; Javierre C; Gracia L
    Polymers (Basel); 2020 May; 12(5):. PubMed ID: 32456238
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Uniaxial and Multiaxial Fatigue Life Prediction of the Trabecular Bone Based on Physiological Loading: A Comparative Study.
    Fatihhi SJ; Harun MN; Abdul Kadir MR; Abdullah J; Kamarul T; Öchsner A; Syahrom A
    Ann Biomed Eng; 2015 Oct; 43(10):2487-502. PubMed ID: 25828397
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Early Detection of Subsurface Fatigue Cracks in Rolling Element Bearings by the Knowledge-Based Analysis of Acoustic Emission.
    Hidle EL; Hestmo RH; Adsen OS; Lange H; Vinogradov A
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35890866
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A new performance analysis method for rolling bearing based on the evidential reasoning rule considering perturbation.
    Zhang Y; Zhou G; Zhang W; He W; Wang Y; Zhang Y; Han P
    Sci Rep; 2022 Oct; 12(1):17842. PubMed ID: 36284194
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A New Approach to the Degradation Stage Prediction of Rolling Bearings Using Hierarchical Grey Entropy and a Grey Bootstrap Markov Chain.
    Cheng L; Ma W; Gao Z
    Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005469
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Further Investigations and Parametric Analysis of Microstructural Alterations under Rolling Contact Fatigue.
    Abdullah MU; Khan ZA
    Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431571
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Novel Method for Remaining Useful Life Prediction of Roller Bearings Involving the Discrepancy and Similarity of Degradation Trajectories.
    Luo H; Bo L; Liu X; Zhang H
    Comput Intell Neurosci; 2021; 2021():2500997. PubMed ID: 34899887
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impulse Response of the Elasto-Hydrodynamic Lubrication Film of a Rolling Bearing to Dynamic Excitation of a Flat Belt Drive.
    Adamčík P; Murčinková Z
    Materials (Basel); 2020 Oct; 13(20):. PubMed ID: 33066065
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Application of Residual Structure Time Convolutional Network Based on Attention Mechanism in Remaining Useful Life Interval Prediction of Bearings.
    Zhang C; Zeng M; Fan J; Li X
    Sensors (Basel); 2024 Jun; 24(13):. PubMed ID: 39000911
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Calculation method for the static carrying curve of double-row different-diameter ball slewing bearings.
    Li Y; Wang R; Mao F
    Sci Prog; 2023; 106(2):368504231180026. PubMed ID: 37338540
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Preliminary Research on Response of GCr15 Bearing Steel under Cyclic Compression.
    Zheng X; Zhang Y; Du S
    Materials (Basel); 2020 Aug; 13(16):. PubMed ID: 32764251
    [TBL] [Abstract][Full Text] [Related]  

  • 37. University of Ferrara run-to-failure vibration dataset of self-aligning double-row ball bearings.
    Arpa L; Gabrielli A; Battarra M; Mucchi E
    Data Brief; 2024 Aug; 55():110620. PubMed ID: 39040557
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fault Diagnosis for Rolling Bearings under Variable Conditions Based on Visual Cognition.
    Cheng Y; Zhou B; Lu C; Yang C
    Materials (Basel); 2017 May; 10(6):. PubMed ID: 28772943
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bending Fatigue Behaviour and Fatigue Endurance Limit Prediction of 20Cr2Ni4A Gear Steel after the Ultrasonic Surface Rolling Process.
    Wang Z; Huang Y; Xing Z; Wang H; Shan D; Xie F; Li J
    Materials (Basel); 2021 May; 14(10):. PubMed ID: 34066257
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Economic tolerance design of the P2 raceway based on the quasi-static model of aerospace ball bearings.
    Chang Z; Hu L; Cao W
    Sci Rep; 2024 Feb; 14(1):3657. PubMed ID: 38351218
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.