These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 30682887)

  • 1. Interfacial Self-Assembly in Halloysite Nanotube Composites.
    Lvov Y; Panchal A; Fu Y; Fakhrullin R; Kryuchkova M; Batasheva S; Stavitskaya A; Glotov A; Vinokurov V
    Langmuir; 2019 Jul; 35(26):8646-8657. PubMed ID: 30682887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Architectural design of core-shell nanotube systems based on aluminosilicate clay.
    Stavitskaya A; Rubtsova M; Glotov A; Vinokurov V; Vutolkina A; Fakhrullin R; Lvov Y
    Nanoscale Adv; 2022 Jun; 4(13):2823-2835. PubMed ID: 36132000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clay nanotube-metal core/shell catalysts for hydroprocesses.
    Glotov A; Vutolkina A; Pimerzin A; Vinokurov V; Lvov Y
    Chem Soc Rev; 2021 Aug; 50(16):9240-9277. PubMed ID: 34241609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Micropatterning of biologically derived surfaces with functional clay nanotubes.
    Liu M; Fakhrullin R; Stavitskaya A; Vinokurov V; Lama N; Lvov Y
    Sci Technol Adv Mater; 2024; 25(1):2327276. PubMed ID: 38532983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Halloysite Clay Nanotubes for Loading and Sustained Release of Functional Compounds.
    Lvov Y; Wang W; Zhang L; Fakhrullin R
    Adv Mater; 2016 Feb; 28(6):1227-50. PubMed ID: 26438998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of metal clusters in halloysite clay nanotubes.
    Vinokurov VA; Stavitskaya AV; Chudakov YA; Ivanov EV; Shrestha LK; Ariga K; Darrat YA; Lvov YM
    Sci Technol Adv Mater; 2017; 18(1):147-151. PubMed ID: 28458738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tubule Nanoclay-Organic Heterostructures for Biomedical Applications.
    Liu M; Fakhrullin R; Novikov A; Panchal A; Lvov Y
    Macromol Biosci; 2019 Apr; 19(4):e1800419. PubMed ID: 30565394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Halloysite clay nanotubes for controlled release of protective agents.
    Lvov YM; Shchukin DG; Möhwald H; Price RR
    ACS Nano; 2008 May; 2(5):814-20. PubMed ID: 19206476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Halloysite clay nanotubes as a ceramic "skeleton" for functional biopolymer composites with sustained drug release.
    Abdullayev E; Lvov Y
    J Mater Chem B; 2013 Jun; 1(23):2894-2903. PubMed ID: 32260855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacterial proliferation on clay nanotube Pickering emulsions for oil spill bioremediation.
    Panchal A; Swientoniewski LT; Omarova M; Yu T; Zhang D; Blake DA; John V; Lvov YM
    Colloids Surf B Biointerfaces; 2018 Apr; 164():27-33. PubMed ID: 29367054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Halloysite clay nanotubes for life sciences applications: From drug encapsulation to bioscaffold.
    Santos AC; Ferreira C; Veiga F; Ribeiro AJ; Panchal A; Lvov Y; Agarwal A
    Adv Colloid Interface Sci; 2018 Jul; 257():58-70. PubMed ID: 29887382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antimicrobial Applications of Clay Nanotube-Based Composites.
    Stavitskaya A; Batasheva S; Vinokurov V; Fakhrullina G; Sangarov V; Lvov Y; Fakhrullin R
    Nanomaterials (Basel); 2019 May; 9(5):. PubMed ID: 31067741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ruthenium-Loaded Halloysite Nanotubes as Mesocatalysts for Fischer-Tropsch Synthesis.
    Stavitskaya A; Mazurova K; Kotelev M; Eliseev O; Gushchin P; Glotov A; Kazantsev R; Vinokurov V; Lvov Y
    Molecules; 2020 Apr; 25(8):. PubMed ID: 32290415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of Marine Antifouling Epoxy Coating Enhanced with Clay Nanotubes.
    Fu Y; Wang W; Zhang L; Vinokurov V; Stavitskaya A; Lvov Y
    Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31847219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interfacial adsorption and surfactant release characteristics of magnetically functionalized halloysite nanotubes for responsive emulsions.
    Owoseni O; Nyankson E; Zhang Y; Adams DJ; He J; Spinu L; McPherson GL; Bose A; Gupta RB; John VT
    J Colloid Interface Sci; 2016 Feb; 463():288-98. PubMed ID: 26555959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface modified halloysite nanotubes: A flexible interface for biological, environmental and catalytic applications.
    Tharmavaram M; Pandey G; Rawtani D
    Adv Colloid Interface Sci; 2018 Nov; 261():82-101. PubMed ID: 30243667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytocompatibility and uptake of halloysite clay nanotubes.
    Vergaro V; Abdullayev E; Lvov YM; Zeitoun A; Cingolani R; Rinaldi R; Leporatti S
    Biomacromolecules; 2010 Mar; 11(3):820-6. PubMed ID: 20170093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antifouling Thermoplastic Composites with Maleimide Encapsulated in Clay Nanotubes.
    Fu Y; Gong C; Wang W; Zhang L; Ivanov E; Lvov Y
    ACS Appl Mater Interfaces; 2017 Sep; 9(35):30083-30091. PubMed ID: 28812870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Composite microparticles of halloysite clay nanotubes bound by calcium carbonate.
    Jin Y; Yendluri R; Chen B; Wang J; Lvov Y
    J Colloid Interface Sci; 2016 Mar; 466():254-60. PubMed ID: 26745741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Halloysite clay nanotubes for resveratrol delivery to cancer cells.
    Vergaro V; Lvov YM; Leporatti S
    Macromol Biosci; 2012 Sep; 12(9):1265-71. PubMed ID: 22887783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.