BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 30683353)

  • 21. Laser induced-thermal lens spectrometry after cloud point extraction for the determination of trace amounts of palladium.
    Shokoufi N; Shemirani F; Shokoufi M
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Oct; 74(3):761-6. PubMed ID: 19729341
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Preparation of thin films comprising palladium nanoparticles by a solid-liquid interface reaction technique.
    Patil KR; Hwang YK; Kim MJ; Chang JS; Park SE
    J Colloid Interface Sci; 2004 Aug; 276(2):333-8. PubMed ID: 15271560
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tuning the surfaces of palladium nanoparticles for the catalytic conversion of Cr(VI) to Cr(III).
    K'Owino IO; Omole MA; Sadik OA
    J Environ Monit; 2007 Jul; 9(7):657-65. PubMed ID: 17607385
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Supramolecular solvent-based extraction coupled with vortex-mixing for determination of palladium and silver in water samples by flame atomic absorption spectrometry.
    Meng L; Cheng J; Yang Y
    Water Sci Technol; 2014; 69(3):580-6. PubMed ID: 24552731
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A colorimetric probe to determine Pb(2+) using functionalized silver nanoparticles.
    Noh KC; Nam YS; Lee HJ; Lee KB
    Analyst; 2015 Dec; 140(24):8209-16. PubMed ID: 26555436
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Highly selective and sensitive recognition of cobalt(II) ions directly in aqueous solution using carboxyl-functionalized CdS quantum dots as a naked eye colorimetric probe: applications to environmental analysis.
    Gore AH; Gunjal DB; Kokate MR; Sudarsan V; Anbhule PV; Patil SR; Kolekar GB
    ACS Appl Mater Interfaces; 2012 Oct; 4(10):5217-26. PubMed ID: 22948013
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sensitive electrochemical detection of rutin and isoquercitrin based on SH-β-cyclodextrin functionalized graphene-palladium nanoparticles.
    Liu Z; Xue Q; Guo Y
    Biosens Bioelectron; 2017 Mar; 89(Pt 1):444-452. PubMed ID: 27133027
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biosynthesis of palladium nanoparticles by using Moringa oleifera flower extract and their catalytic and biological properties.
    Anand K; Tiloke C; Phulukdaree A; Ranjan B; Chuturgoon A; Singh S; Gengan RM
    J Photochem Photobiol B; 2016 Dec; 165():87-95. PubMed ID: 27776261
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Paper-Based Analytical Device Based on Combination of Thin Film Microextraction and Reflection Scanometry for Sensitive Colorimetric Determination of Ni(II) in Aqueous Matrix.
    Allafchian AR; Farajmand B; Koupaei AJ
    Bull Environ Contam Toxicol; 2018 Apr; 100(4):529-535. PubMed ID: 29460145
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Colorimetric determination of resorcinol based on localized surface plasmon resonance of silver nanoparticles.
    Zargar B; Hatamie A
    Analyst; 2012 Nov; 137(22):5334-8. PubMed ID: 23016152
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sapium sebiferum leaf extract mediated synthesis of palladium nanoparticles and in vitro investigation of their bacterial and photocatalytic activities.
    Tahir K; Nazir S; Li B; Ahmad A; Nasir T; Khan AU; Shah SA; Khan ZU; Yasin G; Hameed MU
    J Photochem Photobiol B; 2016 Nov; 164():164-173. PubMed ID: 27689741
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of As (V), As (III) by selective reduction/adsorption on palladium nanoparticles in environmental water samples.
    Sounderajan S; Kumar GK; Kumar SA; Udas AC; Venkateswaran G
    Talanta; 2009 May; 78(3):1122-8. PubMed ID: 19269481
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Study of the uptake and bioaccumulation of palladium nanoparticles by Sinapis alba using single particle ICP-MS.
    Kińska K; Jiménez-Lamana J; Kowalska J; Krasnodębska-Ostręga B; Szpunar J
    Sci Total Environ; 2018 Feb; 615():1078-1085. PubMed ID: 29751411
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dispersive liquid-liquid microextraction preconcentration of palladium in water samples and determination by graphite furnace atomic absorption spectrometry.
    Liang P; Zhao E; Li F
    Talanta; 2009 Mar; 77(5):1854-7. PubMed ID: 19159809
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Selective colorimetric sensors based on the monitoring of an unmodified silver nanoparticles (AgNPs) reduction for a simple and rapid determination of mercury.
    Jarujamrus P; Amatatongchai M; Thima A; Khongrangdee T; Mongkontong C
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 May; 142():86-93. PubMed ID: 25699697
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A simple and selective colorimetric mercury (II) sensing system based on chitosan stabilized gold nanoparticles and 2,6-pyridinedicarboxylic acid.
    Tian K; Siegel G; Tiwari A
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():195-199. PubMed ID: 27987698
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Palladium Nanoparticles-Based Fluorescence Resonance Energy Transfer Aptasensor for Highly Sensitive Detection of Aflatoxin M₁ in Milk.
    Li H; Yang D; Li P; Zhang Q; Zhang W; Ding X; Mao J; Wu J
    Toxins (Basel); 2017 Oct; 9(10):. PubMed ID: 29027938
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In situ growth and phenyl functionalization of titania nanoparticles coating for solid-phase microextraction of ultraviolet filters in environmental water samples followed by high performance liquid chromatography-UV detection.
    Li L; Guo R; Li Y; Guo M; Wang X; Du X
    Anal Chim Acta; 2015 Mar; 867():38-46. PubMed ID: 25813026
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Colorimetric determination of o-phenylenediamine in water samples based on the formation of silver nanoparticles as a colorimetric probe.
    Li N; Gu Y; Gao M; Wang Z; Xiao D; Li Y; Lin R; He H
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Apr; 140():328-33. PubMed ID: 25615678
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Palladium nanoparticles synthesis, characterization using glucosamine as the reductant and stabilizing agent to explore their antibacterial & catalytic applications.
    Ullah S; Ahmad A; Khan A; Zhang J; Raza M; Rahman AU; Tariq M; Ali Khan U; Zada S; Yuan Q
    Microb Pathog; 2018 Dec; 125():150-157. PubMed ID: 30217515
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.