These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 30683460)

  • 21. Microtubule minus-end binding protein CAMSAP2 controls axon specification and dendrite development.
    Yau KW; van Beuningen SF; Cunha-Ferreira I; Cloin BM; van Battum EY; Will L; Schätzle P; Tas RP; van Krugten J; Katrukha EA; Jiang K; Wulf PS; Mikhaylova M; Harterink M; Pasterkamp RJ; Akhmanova A; Kapitein LC; Hoogenraad CC
    Neuron; 2014 Jun; 82(5):1058-73. PubMed ID: 24908486
    [TBL] [Abstract][Full Text] [Related]  

  • 22. SCG10, a microtubule destabilizing factor, stimulates the neurite outgrowth by modulating microtubule dynamics in rat hippocampal primary cultured neurons.
    Morii H; Shiraishi-Yamaguchi Y; Mori N
    J Neurobiol; 2006 Sep; 66(10):1101-14. PubMed ID: 16838365
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inhibition of neurite polarity by tau antisense oligonucleotides in primary cerebellar neurons.
    Caceres A; Kosik KS
    Nature; 1990 Feb; 343(6257):461-3. PubMed ID: 2105469
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lack of stabilized microtubules as a result of the absence of major maps in CAD cells does not preclude neurite formation.
    Bisig CG; Chesta ME; Zampar GG; Purro SA; Santander VS; Arce CA
    FEBS J; 2009 Dec; 276(23):7110-23. PubMed ID: 19878302
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Saccharin enhances neurite extension by regulating organization of the microtubules.
    Yamashita H; Muroi Y; Ishii T
    Life Sci; 2013 Nov; 93(20):732-41. PubMed ID: 24095948
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The GSK3-MAP1B pathway controls neurite branching and microtubule dynamics.
    Barnat M; Benassy MN; Vincensini L; Soares S; Fassier C; Propst F; Andrieux A; von Boxberg Y; Nothias F
    Mol Cell Neurosci; 2016 Apr; 72():9-21. PubMed ID: 26773468
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Growth cones: the mechanism of neurite advance.
    Gordon-Weeks PR
    Bioessays; 1991 May; 13(5):235-9. PubMed ID: 1892476
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Amyloid beta: a putative intra-spinal microtubule-depolymerizer to induce synapse-loss or dentritic spine shortening in Alzheimer's disease.
    Mitsuyama F; Futatsugi Y; Okuya M; Karagiozov K; Peev N; Kato Y; Kanno T; Sano H; Koide T
    Ital J Anat Embryol; 2009; 114(2-3):109-20. PubMed ID: 20198823
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Axonal pruning is actively regulated by the microtubule-destabilizing protein kinesin superfamily protein 2A.
    Maor-Nof M; Homma N; Raanan C; Nof A; Hirokawa N; Yaron A
    Cell Rep; 2013 Apr; 3(4):971-7. PubMed ID: 23562155
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Actomyosin-dependent microtubule rearrangement in lysophosphatidic acid-induced neurite remodeling of young cortical neurons.
    Fukushima N; Morita Y
    Brain Res; 2006 Jun; 1094(1):65-75. PubMed ID: 16690038
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Temporal relation between neural activity and neurite pruning on a numerical model and a microchannel device with micro electrode array.
    Kondo Y; Yada Y; Haga T; Takayama Y; Isomura T; Jimbo Y; Fukayama O; Hoshino T; Mabuchi K
    Biochem Biophys Res Commun; 2017 Apr; 486(2):539-544. PubMed ID: 28322793
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Non-centrosomal nucleation mediated by augmin organizes microtubules in post-mitotic neurons and controls axonal microtubule polarity.
    Sánchez-Huertas C; Freixo F; Viais R; Lacasa C; Soriano E; Lüders J
    Nat Commun; 2016 Jul; 7():12187. PubMed ID: 27405868
    [TBL] [Abstract][Full Text] [Related]  

  • 33. SHATI/NAT8L regulates neurite outgrowth via microtubule stabilization.
    Toriumi K; Ikami M; Kondo M; Mouri A; Koseki T; Ibi D; Furukawa-Hibi Y; Nagai T; Mamiya T; Nitta A; Yamada K; Nabeshima T
    J Neurosci Res; 2013 Dec; 91(12):1525-32. PubMed ID: 24105954
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Axon retraction and degeneration in development and disease.
    Luo L; O'Leary DD
    Annu Rev Neurosci; 2005; 28():127-56. PubMed ID: 16022592
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microtubules in health and degenerative disease of the nervous system.
    Matamoros AJ; Baas PW
    Brain Res Bull; 2016 Sep; 126(Pt 3):217-225. PubMed ID: 27365230
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tau protein and the establishment of an axonal morphology.
    Kosik KS; Caceres A
    J Cell Sci Suppl; 1991; 15():69-74. PubMed ID: 1668596
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tau is enriched on dynamic microtubules in the distal region of growing axons.
    Black MM; Slaughter T; Moshiach S; Obrocka M; Fischer I
    J Neurosci; 1996 Jun; 16(11):3601-19. PubMed ID: 8642405
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phosphorylation of Drebrin and Its Role in Neuritogenesis.
    Gordon-Weeks PR
    Adv Exp Med Biol; 2017; 1006():49-60. PubMed ID: 28865014
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Axon pruning during Drosophila metamorphosis: evidence for local degeneration and requirement of the ubiquitin-proteasome system.
    Watts RJ; Hoopfer ED; Luo L
    Neuron; 2003 Jun; 38(6):871-85. PubMed ID: 12818174
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modulation of neurite branching by protein phosphorylation in cultured rat hippocampal neurons.
    Audesirk G; Cabell L; Kern M
    Brain Res Dev Brain Res; 1997 Sep; 102(2):247-60. PubMed ID: 9352107
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.