These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 30683731)

  • 21. Invited review: molecular adaptations in mammalian hibernators: unique adaptations or generalized responses?
    Van Breukelen F; Martin SL
    J Appl Physiol (1985); 2002 Jun; 92(6):2640-7. PubMed ID: 12015384
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cloning and expression of hypoxia-inducible factor 1alpha from the hibernating ground squirrel, Spermophilus tridecemlineatus.
    Morin P; Storey KB
    Biochim Biophys Acta; 2005 May; 1729(1):32-40. PubMed ID: 15811624
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of hibernation on bone marrow transcriptome in thirteen-lined ground squirrels.
    Cooper ST; Sell SS; Fahrenkrog M; Wilkinson K; Howard DR; Bergen H; Cruz E; Cash SE; Andrews MT; Hampton M
    Physiol Genomics; 2016 Jul; 48(7):513-25. PubMed ID: 27207617
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The temporal organization of daily torpor and hibernation: circadian and circannual rhythms.
    Körtner G; Geiser F
    Chronobiol Int; 2000 Mar; 17(2):103-28. PubMed ID: 10757457
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cardiovascular function in large to small hibernators: bears to ground squirrels.
    Nelson OL; Robbins CT
    J Comp Physiol B; 2015 Apr; 185(3):265-79. PubMed ID: 25542162
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of miRNAs modulated by torpor in the hibernating ground squirrel Ictidomys tridecemlineatus liver by next-generation sequencing.
    Morin MD; Lang-Ouellette D; Lyons PJ; Crapoulet N; Morin P
    Cryo Letters; 2017; 38(4):269-277. PubMed ID: 29734428
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Detection of differential gene expression in brown adipose tissue of hibernating arctic ground squirrels with mouse microarrays.
    Yan J; Burman A; Nichols C; Alila L; Showe LC; Showe MK; Boyer BB; Barnes BM; Marr TG
    Physiol Genomics; 2006 Apr; 25(2):346-53. PubMed ID: 16464973
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gene expression changes controlling distinct adaptations in the heart and skeletal muscle of a hibernating mammal.
    Vermillion KL; Anderson KJ; Hampton M; Andrews MT
    Physiol Genomics; 2015 Mar; 47(3):58-74. PubMed ID: 25572546
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Up-regulation of the endoplasmic reticulum molecular chaperone GRP78 during hibernation in thirteen-lined ground squirrels.
    Mamady H; Storey KB
    Mol Cell Biochem; 2006 Nov; 292(1-2):89-98. PubMed ID: 16788740
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bats are not squirrels: Revisiting the cost of cooling in hibernating mammals.
    Haase CG; Fuller NW; Hranac CR; Hayman DTS; Olson SH; Plowright RK; McGuire LP
    J Therm Biol; 2019 Apr; 81():185-193. PubMed ID: 30975417
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reduction of metabolism during hibernation and daily torpor in mammals and birds: temperature effect or physiological inhibition?
    Geiser F
    J Comp Physiol B; 1988; 158(1):25-37. PubMed ID: 3385059
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular signatures of mammalian hibernation: comparisons with alternative phenotypes.
    Xu Y; Shao C; Fedorov VB; Goropashnaya AV; Barnes BM; Yan J
    BMC Genomics; 2013 Aug; 14():567. PubMed ID: 23957789
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Seasonal liver protein differences in a hibernator revealed by quantitative proteomics using whole animal isotopic labeling.
    Rose JC; Epperson LE; Carey HV; Martin SL
    Comp Biochem Physiol Part D Genomics Proteomics; 2011 Jun; 6(2):163-70. PubMed ID: 21481655
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genes controlling the metabolic switch in hibernating mammals.
    Andrews MT
    Biochem Soc Trans; 2004 Dec; 32(Pt 6):1021-4. PubMed ID: 15506953
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The role of energy availability in Mammalian hibernation: a cost-benefit approach.
    Humphries MM; Thomas DW; Kramer DL
    Physiol Biochem Zool; 2003; 76(2):165-79. PubMed ID: 12794670
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Seasonal proteomic changes reveal molecular adaptations to preserve and replenish liver proteins during ground squirrel hibernation.
    Epperson LE; Rose JC; Carey HV; Martin SL
    Am J Physiol Regul Integr Comp Physiol; 2010 Feb; 298(2):R329-40. PubMed ID: 19923364
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Torpor expression is associated with differential spermatogenesis in hibernating eastern chipmunks.
    Gagnon MF; Lafleur C; Landry-Cuerrier M; Humphries MM; Kimmins S
    Am J Physiol Regul Integr Comp Physiol; 2020 Oct; 319(4):R455-R465. PubMed ID: 32783688
    [TBL] [Abstract][Full Text] [Related]  

  • 38. How the gut and liver hibernate.
    Kurtz CC; Otis JP; Regan MD; Carey HV
    Comp Biochem Physiol A Mol Integr Physiol; 2021 Mar; 253():110875. PubMed ID: 33348019
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deep sequencing the transcriptome reveals seasonal adaptive mechanisms in a hibernating mammal.
    Hampton M; Melvin RG; Kendall AH; Kirkpatrick BR; Peterson N; Andrews MT
    PLoS One; 2011; 6(10):e27021. PubMed ID: 22046435
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Out cold: biochemical regulation of mammalian hibernation - a mini-review.
    Storey KB
    Gerontology; 2010; 56(2):220-30. PubMed ID: 19602865
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.