BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1026 related articles for article (PubMed ID: 30683739)

  • 1. Saccharomyces cerevisiae Cytosolic Thioredoxins Control Glycolysis, Lipid Metabolism, and Protein Biosynthesis under Wine-Making Conditions.
    Picazo C; McDonagh B; Peinado J; Bárcena JA; Matallana E; Aranda A
    Appl Environ Microbiol; 2019 Apr; 85(7):. PubMed ID: 30683739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduction of oxidative cellular damage by overexpression of the thioredoxin TRX2 gene improves yield and quality of wine yeast dry active biomass.
    Gómez-Pastor R; Pérez-Torrado R; Cabiscol E; Ros J; Matallana E
    Microb Cell Fact; 2010 Feb; 9():9. PubMed ID: 20152017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineered Trx2p industrial yeast strain protects glycolysis and fermentation proteins from oxidative carbonylation during biomass propagation.
    Gómez-Pastor R; Pérez-Torrado R; Cabiscol E; Ros J; Matallana E
    Microb Cell Fact; 2012 Jan; 11():4. PubMed ID: 22230188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overlapping roles of the cytoplasmic and mitochondrial redox regulatory systems in the yeast Saccharomyces cerevisiae.
    Trotter EW; Grant CM
    Eukaryot Cell; 2005 Feb; 4(2):392-400. PubMed ID: 15701801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of thioredoxins in the response of Saccharomyces cerevisiae to oxidative stress induced by hydroperoxides.
    Garrido EO; Grant CM
    Mol Microbiol; 2002 Feb; 43(4):993-1003. PubMed ID: 11929546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving yield of industrial biomass propagation by increasing the Trx2p dosage.
    Gómez-Pastor R; Pérez-Torrado R; Matallana E
    Bioeng Bugs; 2010; 1(5):352-3. PubMed ID: 21326836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modification of the TRX2 gene dose in Saccharomyces cerevisiae affects hexokinase 2 gene regulation during wine yeast biomass production.
    Gómez-Pastor R; Pérez-Torrado R; Matallana E
    Appl Microbiol Biotechnol; 2012 May; 94(3):773-87. PubMed ID: 22223102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fermentative capacity of dry active wine yeast requires a specific oxidative stress response during industrial biomass growth.
    Pérez-Torrado R; Gómez-Pastor R; Larsson C; Matallana E
    Appl Microbiol Biotechnol; 2009 Jan; 81(5):951-60. PubMed ID: 18836715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trx2p-dependent regulation of Saccharomyces cerevisiae oxidative stress response by the Skn7p transcription factor under respiring conditions.
    Gómez-Pastor R; Garre E; Pérez-Torrado R; Matallana E
    PLoS One; 2013; 8(12):e85404. PubMed ID: 24376879
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thioredoxins are required for protection against a reductive stress in the yeast Saccharomyces cerevisiae.
    Trotter EW; Grant CM
    Mol Microbiol; 2002 Nov; 46(3):869-78. PubMed ID: 12410842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A single glutaredoxin or thioredoxin gene is essential for viability in the yeast Saccharomyces cerevisiae.
    Draculic T; Dawes IW; Grant CM
    Mol Microbiol; 2000 Jun; 36(5):1167-74. PubMed ID: 10844700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A glutathione reductase mutant of yeast accumulates high levels of oxidized glutathione and requires thioredoxin for growth.
    Muller EG
    Mol Biol Cell; 1996 Nov; 7(11):1805-13. PubMed ID: 8930901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of target genes to control acetate yield during aerobic fermentation with Saccharomyces cerevisiae.
    Curiel JA; Salvadó Z; Tronchoni J; Morales P; Rodrigues AJ; Quirós M; Gonzalez R
    Microb Cell Fact; 2016 Sep; 15(1):156. PubMed ID: 27627879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced arginine biosynthesis and lower proteolytic profile as indicators of Saccharomyces cerevisiae stress in stationary phase during fermentation of high sugar grape must: A proteomic evidence.
    Noti O; Vaudano E; Giuffrida MG; Lamberti C; Cavallarin L; Garcia-Moruno E; Pessione E
    Food Res Int; 2018 Mar; 105():1011-1018. PubMed ID: 29433191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pre-fermentative supplementation of fatty acids alters the metabolic activity of wine yeasts.
    Pinu FR; Villas-Boas SG; Martin D
    Food Res Int; 2019 Jul; 121():835-844. PubMed ID: 31108815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondria inheritance is a key factor for tolerance to dehydration in wine yeast production.
    Picazo C; Gamero-Sandemetrio E; Orozco H; Albertin W; Marullo P; Matallana E; Aranda A
    Lett Appl Microbiol; 2015 Mar; 60(3):217-22. PubMed ID: 25431242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The yeast Tsa1 peroxiredoxin is a ribosome-associated antioxidant.
    Trotter EW; Rand JD; Vickerstaff J; Grant CM
    Biochem J; 2008 May; 412(1):73-80. PubMed ID: 18271751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytosolic thioredoxin system facilitates the import of mitochondrial small Tim proteins.
    Durigon R; Wang Q; Ceh Pavia E; Grant CM; Lu H
    EMBO Rep; 2012 Oct; 13(10):916-22. PubMed ID: 22878414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. H2O2 activates the nuclear localization of Msn2 and Maf1 through thioredoxins in Saccharomyces cerevisiae.
    Boisnard S; Lagniel G; Garmendia-Torres C; Molin M; Boy-Marcotte E; Jacquet M; Toledano MB; Labarre J; Chédin S
    Eukaryot Cell; 2009 Sep; 8(9):1429-38. PubMed ID: 19581440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A screening system for antioxidants using thioredoxin-deficient yeast: discovery of thermostable antioxidant activity from Agaricus blazei Murill.
    Izawa S; Inoue Y
    Appl Microbiol Biotechnol; 2004 May; 64(4):537-42. PubMed ID: 14593506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 52.