BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 30683854)

  • 41. Effects of treating traumatic brain injury with collagen scaffolds and human bone marrow stromal cells on sprouting of corticospinal tract axons into the denervated side of the spinal cord.
    Mahmood A; Wu H; Qu C; Xiong Y; Chopp M
    J Neurosurg; 2013 Feb; 118(2):381-9. PubMed ID: 23198801
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Spontaneous locomotor recovery in spinal cord injured rats is accompanied by anatomical plasticity of reticulospinal fibers.
    Ballermann M; Fouad K
    Eur J Neurosci; 2006 Apr; 23(8):1988-96. PubMed ID: 16630047
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Neuroplasticity of spinal cord injury and repair.
    Martin JH
    Handb Clin Neurol; 2022; 184():317-330. PubMed ID: 35034745
    [TBL] [Abstract][Full Text] [Related]  

  • 44. EA Improves the Motor Function in Rats with Spinal Cord Injury by Inhibiting Signal Transduction of Semaphorin3A and Upregulating of the Peripheral Nerve Networks.
    Hu R; Xu H; Jiang Y; Chen Y; He K; Wu L; Shao X; Ma R
    Neural Plast; 2020; 2020():8859672. PubMed ID: 33273908
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Short hairpin RNA against PTEN enhances regenerative growth of corticospinal tract axons after spinal cord injury.
    Zukor K; Belin S; Wang C; Keelan N; Wang X; He Z
    J Neurosci; 2013 Sep; 33(39):15350-61. PubMed ID: 24068802
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Back seat driving: hindlimb corticospinal neurons assume forelimb control following ischaemic stroke.
    Starkey ML; Bleul C; Zörner B; Lindau NT; Mueggler T; Rudin M; Schwab ME
    Brain; 2012 Nov; 135(Pt 11):3265-81. PubMed ID: 23169918
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Abundant expression of guidance and synaptogenic molecules in the injured spinal cord.
    Jacobi A; Schmalz A; Bareyre FM
    PLoS One; 2014; 9(2):e88449. PubMed ID: 24523897
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Treatment With the Neutralizing Antibody Against Repulsive Guidance Molecule-a Promotes Recovery From Impaired Manual Dexterity in a Primate Model of Spinal Cord Injury.
    Nakagawa H; Ninomiya T; Yamashita T; Takada M
    Cereb Cortex; 2019 Feb; 29(2):561-572. PubMed ID: 29315368
    [TBL] [Abstract][Full Text] [Related]  

  • 49. DHAM-BMSC matrix promotes axonal regeneration and functional recovery after spinal cord injury in adult rats.
    Liang H; Liang P; Xu Y; Wu J; Liang T; Xu X
    J Neurotrauma; 2009 Oct; 26(10):1745-57. PubMed ID: 19413502
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The Spinal Transcriptome after Cortical Stroke: In Search of Molecular Factors Regulating Spontaneous Recovery in the Spinal Cord.
    Kaiser J; Maibach M; Salpeter I; Hagenbuch N; de Souza VBC; Robinson MD; Schwab ME
    J Neurosci; 2019 Jun; 39(24):4714-4726. PubMed ID: 30962276
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Plasticity of intact rubral projections mediates spontaneous recovery of function after corticospinal tract injury.
    Siegel CS; Fink KL; Strittmatter SM; Cafferty WB
    J Neurosci; 2015 Jan; 35(4):1443-57. PubMed ID: 25632122
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Plasticity of motor network and function in the absence of corticospinal projection.
    Han Q; Cao C; Ding Y; So KF; Wu W; Qu Y; Zhou L
    Exp Neurol; 2015 May; 267():194-208. PubMed ID: 25792481
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Selective long-term reorganization of the corticospinal projection from the supplementary motor cortex following recovery from lateral motor cortex injury.
    McNeal DW; Darling WG; Ge J; Stilwell-Morecraft KS; Solon KM; Hynes SM; Pizzimenti MA; Rotella DL; Vanadurongvan T; Morecraft RJ
    J Comp Neurol; 2010 Mar; 518(5):586-621. PubMed ID: 20034062
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Intercostal nerve implants transduced with an adenoviral vector encoding neurotrophin-3 promote regrowth of injured rat corticospinal tract fibers and improve hindlimb function.
    Blits B; Dijkhuizen PA; Boer GJ; Verhaagen J
    Exp Neurol; 2000 Jul; 164(1):25-37. PubMed ID: 10877912
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Corticospinal circuit remodeling after central nervous system injury is dependent on neuronal activity.
    Bradley PM; Denecke CK; Aljovic A; Schmalz A; Kerschensteiner M; Bareyre FM
    J Exp Med; 2019 Nov; 216(11):2503-2514. PubMed ID: 31391209
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Constraint-induced movement therapy in the adult rat after unilateral corticospinal tract injury.
    Maier IC; Baumann K; Thallmair M; Weinmann O; Scholl J; Schwab ME
    J Neurosci; 2008 Sep; 28(38):9386-403. PubMed ID: 18799672
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Corticospinal reorganization after spinal cord injury.
    Oudega M; Perez MA
    J Physiol; 2012 Aug; 590(16):3647-63. PubMed ID: 22586214
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Anatomical correlates of recovery in single pellet reaching in spinal cord injured rats.
    Hurd C; Weishaupt N; Fouad K
    Exp Neurol; 2013 Sep; 247():605-14. PubMed ID: 23470552
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Gene-Silencing Screen for Mammalian Axon Regeneration Identifies Inpp5f (Sac2) as an Endogenous Suppressor of Repair after Spinal Cord Injury.
    Zou Y; Stagi M; Wang X; Yigitkanli K; Siegel CS; Nakatsu F; Cafferty WB; Strittmatter SM
    J Neurosci; 2015 Jul; 35(29):10429-39. PubMed ID: 26203138
    [TBL] [Abstract][Full Text] [Related]  

  • 60. NCAM-mediated locomotor recovery from spinal cord contusion injury involves neuroprotection, axon regeneration, and synaptogenesis.
    Zhang S; Xia YY; Lim HC; Tang FR; Feng ZW
    Neurochem Int; 2010 Jul; 56(8):919-29. PubMed ID: 20381564
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.