These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 306839)
21. [Study of the contractile mechanism of frog tonic muscle fibers]. Nasledov GA; Lebedinskaia II Fiziol Zh SSSR Im I M Sechenova; 1971 Sep; 57(9):1307-12. PubMed ID: 5316013 [No Abstract] [Full Text] [Related]
23. Voltage activation of contraction in single fibers of frog striated muscle. Bezanilla F; Caputo C; Horowicz P Nihon Seirigaku Zasshi; 1972 Feb; 34(2):91-2. PubMed ID: 4537826 [No Abstract] [Full Text] [Related]
24. Three-dimensional structure of the sarcoplasmic reticulum of skeletal myofibers in chicken and frog. Hayashi K; Nagata T J Submicrosc Cytol Pathol; 1991 Oct; 23(4):509-17. PubMed ID: 1764678 [TBL] [Abstract][Full Text] [Related]
25. [Interpretation of the cross sectional structure of skeletal muscle fibers. 2. Light and electron microscopic studies of m. rectus abdominis in Rana esculenta]. Dauber W Z Mikrosk Anat Forsch; 1975; 89(6):1030-42. PubMed ID: 137606 [TBL] [Abstract][Full Text] [Related]
26. Intracellular localization of markers within injected or cut frog muscle fibers. Eisenberg BR; Mathias RT; Gilai A Am J Physiol; 1979 Jul; 237(1):C50-5. PubMed ID: 313713 [TBL] [Abstract][Full Text] [Related]
27. Lateral transmission of tension in frog myofibers: a myofibrillar network and transverse cytoskeletal connections are possible transmitters. Street SF J Cell Physiol; 1983 Mar; 114(3):346-64. PubMed ID: 6601109 [TBL] [Abstract][Full Text] [Related]
28. A comparative study of the membrane structure in different types of muscle fibers in the frog. Verma V Eur J Cell Biol; 1984 Sep; 35(1):122-8. PubMed ID: 6333340 [TBL] [Abstract][Full Text] [Related]
29. Size and shape of transverse tubule openings in frog twitch muscle fibers. Franzini-Armstrong C; Landmesser L; Pilar G J Cell Biol; 1975 Feb; 64(2):493-7. PubMed ID: 1078824 [TBL] [Abstract][Full Text] [Related]
30. Microfibrils in the myotendon junctions. Ajiri T; Kimura T; Ito R; Inokuchi S Acta Anat (Basel); 1978; 102(4):433-9. PubMed ID: 99970 [TBL] [Abstract][Full Text] [Related]
31. Structure of fibers of sickle cell hemoglobin. Edelstein SJ; Telford JN; Crepeau RH Proc Natl Acad Sci U S A; 1973 Apr; 70(4):1104-7. PubMed ID: 4123929 [TBL] [Abstract][Full Text] [Related]
32. The distribution of the T-system along the sarcomeres of frog and toad sartorius muscles. Peachey LD; Schild RF J Physiol; 1968 Jan; 194(1):249-58. PubMed ID: 4867497 [TBL] [Abstract][Full Text] [Related]
35. The effect of colchicine on myogenesis in vivo in Rana pipiens and Rhodnius prolixus (Hemiptera). Warren RH J Cell Biol; 1968 Dec; 39(3):544-55. PubMed ID: 4177377 [TBL] [Abstract][Full Text] [Related]
36. Thick filament size changes in contraction of human muscles. Yarom R; Sherman G; Robin GC Experientia; 1980 Jan; 36(1):101-3. PubMed ID: 7188907 [TBL] [Abstract][Full Text] [Related]
37. On the connection between the transverse tubules and the plasma membrane in frog semitendinosus skeletal muscle. Are caveolae the mouths of the transverse tubule system? Zampighi G; Vergara J; Ramón F J Cell Biol; 1975 Mar; 64(3):734-40. PubMed ID: 1080153 [TBL] [Abstract][Full Text] [Related]
38. Indentations in the terminal cisternae of amphibian and mammalian skeletal muscle fibers. Dulhunty A; Valois A J Ultrastruct Res; 1983 Jul; 84(1):34-49. PubMed ID: 6411932 [TBL] [Abstract][Full Text] [Related]
39. Striated muscle in the pineal gland of swine. Hayano M; Sung JH; Mastri AR; Hill EG J Neuropathol Exp Neurol; 1976; 35(6):613-21. PubMed ID: 993815 [TBL] [Abstract][Full Text] [Related]
40. Structural correlates of function in the "opercularis" muscle of amphibians. Becker RP; Lombard RE Cell Tissue Res; 1977 Jan; 175(4):499-522. PubMed ID: 830429 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]