BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 30684845)

  • 1. Distribution and re-transportation of sodium in three Malus species with different salt tolerance.
    Yang HB; Yu YC; Wang Y; Xu XF; Han ZH
    Plant Physiol Biochem; 2019 Mar; 136():162-168. PubMed ID: 30684845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential expression of ion transporters and aquaporins in leaves may contribute to different salt tolerance in Malus species.
    Liu C; Li C; Liang D; Wei Z; Zhou S; Wang R; Ma F
    Plant Physiol Biochem; 2012 Sep; 58():159-65. PubMed ID: 22819861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MzPIP2;1: An Aquaporin Involved in Radial Water Movement in Both Water Uptake and Transportation, Altered the Drought and Salt Tolerance of Transgenic Arabidopsis.
    Wang L; Li Q; Lei Q; Feng C; Gao Y; Zheng X; Zhao Y; Wang Z; Kong J
    PLoS One; 2015; 10(11):e0142446. PubMed ID: 26562158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Change in uptake, transport and accumulation of ions in Nerium oleander (rosebay) as affected by different nitrogen sources and salinity.
    Abdolzadeh A; Shima K; Lambers H; Chiba K
    Ann Bot; 2008 Nov; 102(5):735-46. PubMed ID: 18772147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chitosan regulates metabolic balance, polyamine accumulation, and Na
    Geng W; Li Z; Hassan MJ; Peng Y
    BMC Plant Biol; 2020 Nov; 20(1):506. PubMed ID: 33148164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. T-DNA Tagging-Based Gain-of-Function of OsHKT1;4 Reinforces Na Exclusion from Leaves and Stems but Triggers Na Toxicity in Roots of Rice Under Salt Stress.
    Oda Y; Kobayashi NI; Tanoi K; Ma JF; Itou Y; Katsuhara M; Itou T; Horie T
    Int J Mol Sci; 2018 Jan; 19(1):. PubMed ID: 29329278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Na(+) transport in glycophytic plants: what we know and would like to know.
    Craig Plett D; Møller IS
    Plant Cell Environ; 2010 Apr; 33(4):612-26. PubMed ID: 19968828
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of Na
    Chuamnakthong S; Nampei M; Ueda A
    Plant Sci; 2019 Oct; 287():110171. PubMed ID: 31481219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Na
    Wang J; Qiu N; Wang P; Zhang W; Yang X; Chen M; Wang B; Sun J
    Plant Physiol Biochem; 2019 Jul; 140():151-157. PubMed ID: 31103797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sodium interception by xylem parenchyma and chloride recirculation in phloem may augment exclusion in the salt tolerant Pistacia genus: context for salinity studies on tree crops.
    Godfrey JM; Ferguson L; Sanden BL; Tixier A; Sperling O; Grattan SR; Zwieniecki MA
    Tree Physiol; 2019 Aug; 39(8):1484-1498. PubMed ID: 31095335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Base to Tip and Long-Distance Transport of Sodium in the Root of Common Reed [Phragmites australis (Cav.) Trin. ex Steud.] at Steady State Under Constant High-Salt Conditions.
    Fujimaki S; Maruyama T; Suzui N; Kawachi N; Miwa E; Higuchi K
    Plant Cell Physiol; 2015 May; 56(5):943-50. PubMed ID: 25667113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The putative plasma membrane Na(+)/H(+) antiporter SOS1 controls long-distance Na(+) transport in plants.
    Shi H; Quintero FJ; Pardo JM; Zhu JK
    Plant Cell; 2002 Feb; 14(2):465-77. PubMed ID: 11884687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Common reed produces starch granules at the shoot base in response to salt stress.
    Kanai M; Higuchi K; Hagihara T; Konishi T; Ishii T; Fujita N; Nakamura Y; Maeda Y; Yoshiba M; Tadano T
    New Phytol; 2007; 176(3):572-580. PubMed ID: 17953542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences in efficient metabolite management and nutrient metabolic regulation between wild and cultivated barley grown at high salinity.
    Yousfi S; Rabhi M; Hessini K; Abdelly C; Gharsalli M
    Plant Biol (Stuttg); 2010 Jul; 12(4):650-8. PubMed ID: 20636908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential expression of salt overly sensitive pathway genes determines salinity stress tolerance in Brassica genotypes.
    Chakraborty K; Sairam RK; Bhattacharya RC
    Plant Physiol Biochem; 2012 Feb; 51():90-101. PubMed ID: 22153244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of Cl(-) transport contributing to salt tolerance.
    Teakle NL; Tyerman SD
    Plant Cell Environ; 2010 Apr; 33(4):566-89. PubMed ID: 19895402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fruit Tree model for uptake of organic compounds from soil and air.
    Trapp S
    SAR QSAR Environ Res; 2007; 18(3-4):367-87. PubMed ID: 17514576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogen peroxide as a mediator of 5-aminolevulinic acid-induced Na
    Wu WW; He SS; An YY; Cao RX; Sun YP; Tang Q; Wang LJ
    Physiol Plant; 2019 Sep; 167(1):5-20. PubMed ID: 30891756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Glycine max sodium/hydrogen exchanger enhances salt tolerance through maintaining higher Na
    Sun TJ; Fan L; Yang J; Cao RZ; Yang CY; Zhang J; Wang DM
    BMC Plant Biol; 2019 Nov; 19(1):469. PubMed ID: 31690290
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Puccinellia tenuiflora maintains a low Na+ level under salinity by limiting unidirectional Na+ influx resulting in a high selectivity for K+ over Na+.
    Wang CM; Zhang JL; Liu XS; Li Z; Wu GQ; Cai JY; Flowers TJ; Wang SM
    Plant Cell Environ; 2009 May; 32(5):486-96. PubMed ID: 19183292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.