These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 30684950)

  • 21. Leaf structural and hydraulic adjustment with respect to air humidity and canopy position in silver birch (Betula pendula).
    Sellin A; Taneda H; Alber M
    J Plant Res; 2019 May; 132(3):369-381. PubMed ID: 30989500
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Size-dependent enhancement of water relations during post-fire resprouting.
    Schafer JL; Breslow BP; Hollingsworth SN; Hohmann MG; Hoffmann WA
    Tree Physiol; 2014 Apr; 34(4):404-14. PubMed ID: 24682534
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evolutionary significance of a flat-leaved Pinus in Vietnamese rainforest.
    Brodribb TJ; Feild TS
    New Phytol; 2008; 178(1):201-209. PubMed ID: 18179604
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Water transport from stem to stomata: the coordination of hydraulic and gas exchange traits across 33 subtropical woody species.
    Liu X; Liu H; Gleason SM; Goldstein G; Zhu S; He P; Hou H; Li R; Ye Q
    Tree Physiol; 2019 Oct; 39(10):1665-1674. PubMed ID: 31314105
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transport efficiency through uniformity: organization of veins and stomata in angiosperm leaves.
    Fiorin L; Brodribb TJ; Anfodillo T
    New Phytol; 2016 Jan; 209(1):216-27. PubMed ID: 26224215
    [TBL] [Abstract][Full Text] [Related]  

  • 26. How Does Leaf Anatomy Influence Water Transport outside the Xylem?
    Buckley TN; John GP; Scoffoni C; Sack L
    Plant Physiol; 2015 Aug; 168(4):1616-35. PubMed ID: 26084922
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stomatal sensitivity to vapor pressure deficit and its relationship to hydraulic conductance in Pinus palustris.
    Addington RN; Mitchell RJ; Oren R; Donovan LA
    Tree Physiol; 2004 May; 24(5):561-9. PubMed ID: 14996660
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Height-related decreases in mesophyll conductance, leaf photosynthesis and compensating adjustments associated with leaf nitrogen concentrations in Pinus densiflora.
    Han Q
    Tree Physiol; 2011 Sep; 31(9):976-84. PubMed ID: 21467050
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Growth maximization trumps maintenance of leaf conductance in the tallest angiosperm.
    Koch GW; Sillett SC; Antoine ME; Williams CB
    Oecologia; 2015 Feb; 177(2):321-31. PubMed ID: 25542214
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Site fertility and the morphological and photosynthetic acclimation of Pinus sylvestris needles to light.
    Niinemets U; Ellsworth DS; Lukjanova A; Tobias M
    Tree Physiol; 2001 Nov; 21(17):1231-44. PubMed ID: 11696411
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Increase in leaf temperature opens stomata and decouples net photosynthesis from stomatal conductance in Pinus taeda and Populus deltoides x nigra.
    Urban J; Ingwers MW; McGuire MA; Teskey RO
    J Exp Bot; 2017 Mar; 68(7):1757-1767. PubMed ID: 28338959
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Normalization criteria determine the interpretation of nitrogen effects on the root hydraulics of pine seedlings.
    Toca A; Villar-Salvador P; Oliet JA; Jacobs DF
    Tree Physiol; 2020 Oct; 40(10):1381-1391. PubMed ID: 32483620
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The hydraulic conductivity of the xylem in conifer needles (Picea abies and Pinus mugo).
    Charra-Vaskou K; Mayr S
    J Exp Bot; 2011 Aug; 62(12):4383-90. PubMed ID: 21593348
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effects of elevated CO2 and nitrogen fertilization on stomatal conductance estimated from 11 years of scaled sap flux measurements at Duke FACE.
    Ward EJ; Oren R; Bell DM; Clark JS; McCarthy HR; Kim HS; Domec JC
    Tree Physiol; 2013 Feb; 33(2):135-51. PubMed ID: 23243030
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Drought response strategies and hydraulic traits contribute to mechanistic understanding of plant dry-down to hydraulic failure.
    Blackman CJ; Creek D; Maier C; Aspinwall MJ; Drake JE; Pfautsch S; O'Grady A; Delzon S; Medlyn BE; Tissue DT; Choat B
    Tree Physiol; 2019 Jun; 39(6):910-924. PubMed ID: 30865274
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Linking fine root morphology, hydraulic functioning and shade tolerance of trees.
    Zadworny M; Comas LH; Eissenstat DM
    Ann Bot; 2018 Aug; 122(2):239-250. PubMed ID: 29897405
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of branch height on leaf gas exchange, branch hydraulic conductance and branch sap flux in open-grown ponderosa pine.
    Hubbard RM; Bond BJ; Senock RS; Ryan MG
    Tree Physiol; 2002 Jun; 22(8):575-81. PubMed ID: 12045029
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Predicting the decline in daily maximum transpiration rate of two pine stands during drought based on constant minimum leaf water potential and plant hydraulic conductance.
    Duursma RA; Kolari P; Perämäki M; Nikinmaa E; Hari P; Delzon S; Loustau D; Ilvesniemi H; Pumpanen J; Mäkelä A
    Tree Physiol; 2008 Feb; 28(2):265-76. PubMed ID: 18055437
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Trade-offs between leaf hydraulic capacity and drought vulnerability: morpho-anatomical bases, carbon costs and ecological consequences.
    Nardini A; Pedà G; Rocca N
    New Phytol; 2012 Nov; 196(3):788-798. PubMed ID: 22978628
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Embolism and mechanical resistances play a key role in dehydration tolerance of a perennial grass Dactylis glomerata L.
    Volaire F; Lens F; Cochard H; Xu H; Chacon-Doria L; Bristiel P; Balachowski J; Rowe N; Violle C; Picon-Cochard C
    Ann Bot; 2018 Aug; 122(2):325-336. PubMed ID: 29788033
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.