These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 30685571)
1. Gap-induced inhibition of the post-auricular muscle response in humans and guinea pigs. Wilson CA; Berger JI; de Boer J; Sereda M; Palmer AR; Hall DA; Wallace MN Hear Res; 2019 Mar; 374():13-23. PubMed ID: 30685571 [TBL] [Abstract][Full Text] [Related]
2. A novel behavioural approach to detecting tinnitus in the guinea pig. Berger JI; Coomber B; Shackleton TM; Palmer AR; Wallace MN J Neurosci Methods; 2013 Mar; 213(2):188-95. PubMed ID: 23291084 [TBL] [Abstract][Full Text] [Related]
3. Addressing variability in the acoustic startle reflex for accurate gap detection assessment. Longenecker RJ; Kristaponyte I; Nelson GL; Young JW; Galazyuk AV Hear Res; 2018 Jun; 363():119-135. PubMed ID: 29602592 [TBL] [Abstract][Full Text] [Related]
4. Divergent Responses in the Gap Prepulse Inhibition of the Acoustic Startle Reflex in Two Different Guinea Pig Colonies. Leggett K; Mendis V; Mulders W Int Tinnitus J; 2018 Jun; 22(1):1-9. PubMed ID: 29993210 [TBL] [Abstract][Full Text] [Related]
5. The gap prepulse inhibition of the acoustic startle (GPIAS) paradigm to assess auditory temporal processing: Monaural versus binaural presentation. Fournier P; Hébert S Psychophysiology; 2021 Mar; 58(3):e13755. PubMed ID: 33355931 [TBL] [Abstract][Full Text] [Related]
6. Identifying tinnitus in mice by tracking the motion of body markers in response to an acoustic startle. Wallace MN; Berger JI; Hockley A; Sumner CJ; Akeroyd MA; Palmer AR; McNaughton PA Front Neurosci; 2024; 18():1452450. PubMed ID: 39170684 [TBL] [Abstract][Full Text] [Related]
7. Gap-induced reductions of evoked potentials in the auditory cortex: A possible objective marker for the presence of tinnitus in animals. Berger JI; Owen W; Wilson CA; Hockley A; Coomber B; Palmer AR; Wallace MN Brain Res; 2018 Jan; 1679():101-108. PubMed ID: 29191772 [TBL] [Abstract][Full Text] [Related]
8. Does Tinnitus Fill in the Gap Using Electrophysiology? A Scoping Review. Duda V; Scully O; Baillargeon MS; Hébert S Otolaryngol Clin North Am; 2020 Aug; 53(4):563-582. PubMed ID: 32334868 [TBL] [Abstract][Full Text] [Related]
9. A Mouse Model of Tinnitus Using Gap Prepulse Inhibition of the Acoustic Startle in an Accelerated Hearing Loss Strain. Park SY; Kim MJ; Park JM; Park SN Otol Neurotol; 2020 Apr; 41(4):e516-e525. PubMed ID: 32176148 [TBL] [Abstract][Full Text] [Related]
10. Remodeling of cholinergic input to the hippocampus after noise exposure and tinnitus induction in Guinea pigs. Zhang L; Wu C; Martel DT; West M; Sutton MA; Shore SE Hippocampus; 2019 Aug; 29(8):669-682. PubMed ID: 30471164 [TBL] [Abstract][Full Text] [Related]
11. Does tinnitus "fill in" the silent gaps? Campolo J; Lobarinas E; Salvi R Noise Health; 2013; 15(67):398-405. PubMed ID: 24231418 [TBL] [Abstract][Full Text] [Related]
12. A New Statistical Approach for the Evaluation of Gap-prepulse Inhibition of the Acoustic Startle Reflex (GPIAS) for Tinnitus Assessment. Schilling A; Krauss P; Gerum R; Metzner C; Tziridis K; Schulze H Front Behav Neurosci; 2017; 11():198. PubMed ID: 29093668 [No Abstract] [Full Text] [Related]
13. The gap-startle paradigm for tinnitus screening in animal models: limitations and optimization. Lobarinas E; Hayes SH; Allman BL Hear Res; 2013 Jan; 295(1-2):150-60. PubMed ID: 22728305 [TBL] [Abstract][Full Text] [Related]
14. The gap-startle paradigm to assess auditory temporal processing: Bridging animal and human research. Fournier P; Hébert S Psychophysiology; 2016 May; 53(5):759-66. PubMed ID: 26841102 [TBL] [Abstract][Full Text] [Related]
15. Reductions in cortical alpha activity, enhancements in neural responses and impaired gap detection caused by sodium salicylate in awake guinea pigs. Berger JI; Coomber B; Wallace MN; Palmer AR Eur J Neurosci; 2017 Feb; 45(3):398-409. PubMed ID: 27862478 [TBL] [Abstract][Full Text] [Related]
16. Using Extracochlear Multichannel Electrical Stimulation to Relieve Tinnitus and Reverse Tinnitus-Related Auditory-Somatosensory Plasticity in the Cochlear Nucleus. Chen M; Min S; Zhang C; Hu X; Li S Neuromodulation; 2022 Dec; 25(8):1338-1350. PubMed ID: 34346133 [TBL] [Abstract][Full Text] [Related]
17. Prepulse inhibition and facilitation of the postauricular reflex, a vestigial remnant of pinna startle. Hackley SA; Ren X; Underwood A; Valle-Inclán F Psychophysiology; 2017 Apr; 54(4):566-577. PubMed ID: 28168713 [TBL] [Abstract][Full Text] [Related]
18. Characterization of the perceived sound of trauma-induced tinnitus in gerbils. Nowotny M; Remus M; Kössl M; Gaese BH J Acoust Soc Am; 2011 Nov; 130(5):2827-34. PubMed ID: 22087911 [TBL] [Abstract][Full Text] [Related]
19. Effect of age on the gap-prepulse inhibition of the cortical N1-P2 complex in humans as a step towards an objective measure of tinnitus. Ku Y; Kim DY; Kwon C; Noh TS; Park MK; Lee JH; Oh SH; Kim HC; Suh MW PLoS One; 2020; 15(11):e0241136. PubMed ID: 33152745 [TBL] [Abstract][Full Text] [Related]
20. Effects of eye rotation on the sound-evoked post-auricular muscle response (PAMR). Patuzzi RB; O'Beirne GA Hear Res; 1999 Dec; 138(1-2):133-46. PubMed ID: 10575121 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]