These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 30685609)

  • 1. Synthesis of highly-specific stable nanocrystalline goethite-like hydrous ferric oxide nanoparticles for biomedical applications by simple precipitation method.
    Lunin AV; Kolychev EL; Mochalova EN; Cherkasov VR; Nikitin MP
    J Colloid Interface Sci; 2019 Apr; 541():143-149. PubMed ID: 30685609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solubility of hematite revisited: effects of hydration.
    Jang JH; Dempsey BA; Burgos WD
    Environ Sci Technol; 2007 Nov; 41(21):7303-8. PubMed ID: 18044503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polyphosphates and Fulvates Enhance Environmental Stability of PO
    Bollyn J; Nijsen M; Baken S; Joye I; Waegeneers N; Cornelis G; Smolders E
    J Agric Food Chem; 2016 Nov; 64(45):8465-8473. PubMed ID: 27754660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlled synthesis of iron oxyhydroxide (FeOOH) nanoparticles using secretory compounds from
    Ghanbariasad A; Taghizadeh SM; Show PL; Nomanbhay S; Berenjian A; Ghasemi Y; Ebrahiminezhad A
    Bioengineered; 2019 Dec; 10(1):390-396. PubMed ID: 31495263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption of trimethyl phosphate and triethyl phosphate on dry and water pre-covered hematite, maghemite, and goethite nanoparticles.
    Mäkie P; Persson P; Österlund L
    J Colloid Interface Sci; 2013 Feb; 392():349-358. PubMed ID: 23142013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adsorption of bacteriophage MS2 to magnetic iron oxide nanoparticles in aqueous solutions.
    Park JA; Kim SB; Lee CG; Lee SH; Choi JW
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(10):1116-24. PubMed ID: 24844892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Size-Selective Retention on the Cotransport of Hydroxyapatite and Goethite Nanoparticles in Saturated Porous Media.
    Wang D; Jin Y; Jaisi DP
    Environ Sci Technol; 2015 Jul; 49(14):8461-70. PubMed ID: 26084013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of aqueous Fe(II) on arsenate sorption on goethite and hematite.
    Catalano JG; Luo Y; Otemuyiwa B
    Environ Sci Technol; 2011 Oct; 45(20):8826-33. PubMed ID: 21899306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Size-controlled synthesis of rod-like α-FeOOH nanostructure.
    Wei C; Qiao P; Nan Z
    Mater Sci Eng C Mater Biol Appl; 2012 Aug; 32(6):1524-30. PubMed ID: 24364955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fe electron transfer and atom exchange in goethite: influence of Al-substitution and anion sorption.
    Latta DE; Bachman JE; Scherer MM
    Environ Sci Technol; 2012 Oct; 46(19):10614-23. PubMed ID: 22963051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioconjugation and Fluorescence Labeling of Iron Oxide Nanoparticles Grafted with Bromomaleimide-Terminal Polymers.
    Qiao R; Esser L; Fu C; Zhang C; Hu J; Ramírez-Arcía P; Li Y; Quinn JF; Whittaker MR; Whittaker AK; Davis TP
    Biomacromolecules; 2018 Nov; 19(11):4423-4429. PubMed ID: 30350948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The fate of arsenic adsorbed on iron oxides in the presence of arsenite-oxidizing bacteria.
    Zhang Z; Yin N; Du H; Cai X; Cui Y
    Chemosphere; 2016 May; 151():108-15. PubMed ID: 26933901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of biocompatible iron oxide nanoparticles as a drug delivery vehicle.
    Kansara K; Patel P; Shukla RK; Pandya A; Shanker R; Kumar A; Dhawan A
    Int J Nanomedicine; 2018; 13(T-NANO 2014 Abstracts):79-82. PubMed ID: 29593401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From bacteria to mollusks: the principles underlying the biomineralization of iron oxide materials.
    Faivre D; Godec TU
    Angew Chem Int Ed Engl; 2015 Apr; 54(16):4728-47. PubMed ID: 25851816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Designed synthesis and surface engineering strategies of magnetic iron oxide nanoparticles for biomedical applications.
    Wu W; Jiang CZ; Roy VA
    Nanoscale; 2016 Dec; 8(47):19421-19474. PubMed ID: 27812592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical synthesis and assembly of uniformly sized iron oxide nanoparticles for medical applications.
    Ling D; Lee N; Hyeon T
    Acc Chem Res; 2015 May; 48(5):1276-85. PubMed ID: 25922976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proton binding by hydrous ferric oxide and aluminum oxide surfaces interpreted using fully optimized continuous pKa spectra.
    Smith DS; Ferris FG
    Environ Sci Technol; 2001 Dec; 35(23):4637-42. PubMed ID: 11770764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Underestimation of phosphorus fraction change in the supernatant after phosphorus adsorption onto iron oxides and iron oxide-natural organic matter complexes.
    Yan J; Jiang T; Yao Y; Wang J; Cai Y; Green NW; Wei S
    J Environ Sci (China); 2017 May; 55():197-205. PubMed ID: 28477813
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of trace element release during Fe(II)-activated recrystallization of Al-, Cr-, and Sn-substituted goethite and hematite.
    Frierdich AJ; Scherer MM; Bachman JE; Engelhard MH; Rapponotti BW; Catalano JG
    Environ Sci Technol; 2012 Sep; 46(18):10031-9. PubMed ID: 22924460
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrasmall iron oxide nanoparticles: synthesis, surface modification, assembly, and biomedical applications.
    Song C; Sun W; Xiao Y; Shi X
    Drug Discov Today; 2019 Mar; 24(3):835-844. PubMed ID: 30639557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.