These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 30685726)

  • 81. Spatial and temporal changes in the morphology of preosteoblastic cells seeded on microstructured tantalum surfaces.
    Justesen J; Lorentzen M; Andersen LK; Hansen O; Chevallier J; Modin C; Füchtbauer A; Foss M; Besenbacher F; Duch M; Pedersen FS
    J Biomed Mater Res A; 2009 Jun; 89(4):885-94. PubMed ID: 18465820
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Effect of enzymatic degradation of chitosan in polyhydroxybutyrate/chitosan/calcium phosphate composites on in vitro osteoblast response.
    Giretova M; Medvecky L; Stulajterova R; Sopcak T; Briancin J; Tatarkova M
    J Mater Sci Mater Med; 2016 Dec; 27(12):181. PubMed ID: 27770394
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Elastic poly(ε-caprolactone)-polydimethylsiloxane copolymer fibers with shape memory effect for bone tissue engineering.
    Kai D; Prabhakaran MP; Chan BQ; Liow SS; Ramakrishna S; Xu F; Loh XJ
    Biomed Mater; 2016 Feb; 11(1):015007. PubMed ID: 26836757
    [TBL] [Abstract][Full Text] [Related]  

  • 84. [Platelet-rich plasma made by a modified method promotes proliferation of rat osteoblast and human osteoblast in vitro].
    Song Y; Chao Y; Gong P
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2005 Mar; 19(3):178-82. PubMed ID: 15828469
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Strain-dependent control of transforming growth factor-beta function in osteoblasts in an in vitro model: biochemical events associated with distraction osteogenesis.
    Knoll BI; McCarthy TL; Centrella M; Shin J
    Plast Reconstr Surg; 2005 Jul; 116(1):224-33. PubMed ID: 15988272
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Ionic dissolution products of NovaBone promote osteoblastic proliferation via influences on the cell cycle.
    Qiu Z; Yang H; Wu J; Wei L; Li J
    J Int Med Res; 2009; 37(3):737-45. PubMed ID: 19589257
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Effects of hierarchical micro/nano-topographies on the morphology, proliferation and differentiation of osteoblast-like cells.
    Huang Q; Elkhooly TA; Liu X; Zhang R; Yang X; Shen Z; Feng Q
    Colloids Surf B Biointerfaces; 2016 Sep; 145():37-45. PubMed ID: 27137801
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Development of a smart, anti-water polyurethane polymer hair coating for style setting.
    Liu Y; Liu YJ; Hu J; Ji FL; Lv J; Chen SJ; Zhu Y
    Int J Cosmet Sci; 2016 Jun; 38(3):305-11. PubMed ID: 26584010
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Scaffolds from block polyurethanes based on poly(ɛ-caprolactone) (PCL) and poly(ethylene glycol) (PEG) for peripheral nerve regeneration.
    Niu Y; Chen KC; He T; Yu W; Huang S; Xu K
    Biomaterials; 2014 May; 35(14):4266-77. PubMed ID: 24582378
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Nanostructured poly(epsilon-caprolactone)-silica xerogel fibrous membrane for guided bone regeneration.
    Lee EJ; Teng SH; Jang TS; Wang P; Yook SW; Kim HE; Koh YH
    Acta Biomater; 2010 Sep; 6(9):3557-65. PubMed ID: 20304111
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Nanoceramics on osteoblast proliferation and differentiation in bone tissue engineering.
    Sethu SN; Namashivayam S; Devendran S; Nagarajan S; Tsai WB; Narashiman S; Ramachandran M; Ambigapathi M
    Int J Biol Macromol; 2017 May; 98():67-74. PubMed ID: 28130134
    [TBL] [Abstract][Full Text] [Related]  

  • 92. The response of osteoblasts to nanocrystalline silicon-substituted hydroxyapatite thin films.
    Thian ES; Huang J; Best SM; Barber ZH; Brooks RA; Rushton N; Bonfield W
    Biomaterials; 2006 May; 27(13):2692-8. PubMed ID: 16423389
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Three-dimensional dynamic culture of pre-osteoblasts seeded in HA-CS/Col/nHAP composite scaffolds and treated with α-ZAL.
    Liu L; Guo Y; Chen X; Li R; Li Z; Wang L; Wan Z; Li J; Hao Q; Li H; Zhang X
    Acta Biochim Biophys Sin (Shanghai); 2012 Aug; 44(8):669-77. PubMed ID: 22728916
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Antibacterial nanostructured composite films for biomedical applications: microstructural characteristics, biocompatibility, and antibacterial mechanisms.
    Lee FP; Wang DY; Chen LK; Kung CM; Wu YC; Ou KL; Yu CH
    Biofouling; 2013; 29(3):295-305. PubMed ID: 23528126
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Preparation and properties of biomedical segmented polyurethanes based on poly(ether ester) and uniform-size diurethane diisocyanates.
    Yin S; Xia Y; Jia Q; Hou ZS; Zhang N
    J Biomater Sci Polym Ed; 2017 Jan; 28(1):119-138. PubMed ID: 27774855
    [TBL] [Abstract][Full Text] [Related]  

  • 96. In Situ Observation on Rate-Dependent Strain Localization of Thermo-Induced Shape Memory Polyurethane.
    Li J; Kan Q; Chen K; Liang Z; Kang G
    Polymers (Basel); 2019 Jun; 11(6):. PubMed ID: 31167342
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Editorial: Shape and size dependent nanostructures for environmental applications.
    Baral B; Altaee A; Simeonidis K; Samal AK
    Front Chem; 2024; 12():1362033. PubMed ID: 38318110
    [No Abstract]   [Full Text] [Related]  

  • 98. Shape recovery strain and nanostructures on recovered polyurethane films and their regulation to osteoblasts morphology.
    Xing J; Pan X; Zhang H; Wang J; Ma Y; Wang Y; Luo Y
    J Mech Behav Biomed Mater; 2019 Apr; 92():128-136. PubMed ID: 30685726
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Stretching-induced nanostructures on shape memory polyurethane films and their regulation to osteoblasts morphology.
    Xing J; Ma Y; Lin M; Wang Y; Pan H; Ruan C; Luo Y
    Colloids Surf B Biointerfaces; 2016 Oct; 146():431-41. PubMed ID: 27395036
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Bending shape memory behaviours of carbon fibre reinforced polyurethane-type shape memory polymer composites under relatively small deformation: Characterisation and computational simulation.
    Cheng X; Chen Y; Dai S; Bilek MMM; Bao S; Ye L
    J Mech Behav Biomed Mater; 2019 Dec; 100():103372. PubMed ID: 31369958
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.