BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

843 related articles for article (PubMed ID: 30685762)

  • 1. tRNA-DL: A Deep Learning Approach to Improve tRNAscan-SE Prediction Results.
    Gao X; Wei Z; Hakonarson H
    Hum Hered; 2018; 83(3):163-172. PubMed ID: 30685762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving tRNAscan-SE Annotation Results via Ensemble Classifiers.
    Zou Q; Guo J; Ju Y; Wu M; Zeng X; Hong Z
    Mol Inform; 2015 Nov; 34(11-12):761-70. PubMed ID: 27491037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes.
    Lowe TM; Chan PP
    Nucleic Acids Res; 2016 Jul; 44(W1):W54-7. PubMed ID: 27174935
    [TBL] [Abstract][Full Text] [Related]  

  • 4. tRNAscan-SE: Searching for tRNA Genes in Genomic Sequences.
    Chan PP; Lowe TM
    Methods Mol Biol; 2019; 1962():1-14. PubMed ID: 31020551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence.
    Lowe TM; Eddy SR
    Nucleic Acids Res; 1997 Mar; 25(5):955-64. PubMed ID: 9023104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Off-target predictions in CRISPR-Cas9 gene editing using deep learning.
    Lin J; Wong KC
    Bioinformatics; 2018 Sep; 34(17):i656-i663. PubMed ID: 30423072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Classification of G-protein coupled receptors based on a rich generation of convolutional neural network, N-gram transformation and multiple sequence alignments.
    Li M; Ling C; Xu Q; Gao J
    Amino Acids; 2018 Feb; 50(2):255-266. PubMed ID: 29151135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On distinguishing between canonical tRNA genes and tRNA gene fragments in prokaryotes.
    van der Gulik PTS; Egas M; Kraaijeveld K; Dombrowski N; Groot AT; Spang A; Hoff WD; Gallie J
    RNA Biol; 2023 Jan; 20(1):48-58. PubMed ID: 36727270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimizing neural networks for medical data sets: A case study on neonatal apnea prediction.
    Shirwaikar RD; Acharya U D; Makkithaya K; M S; Srivastava S; Lewis U LES
    Artif Intell Med; 2019 Jul; 98():59-76. PubMed ID: 31521253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. tRNAscan-SE 2.0: improved detection and functional classification of transfer RNA genes.
    Chan PP; Lin BY; Mak AJ; Lowe TM
    Nucleic Acids Res; 2021 Sep; 49(16):9077-9096. PubMed ID: 34417604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting protein-ligand binding residues with deep convolutional neural networks.
    Cui Y; Dong Q; Hong D; Wang X
    BMC Bioinformatics; 2019 Feb; 20(1):93. PubMed ID: 30808287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNA-protein binding motifs mining with a new hybrid deep learning based cross-domain knowledge integration approach.
    Pan X; Shen HB
    BMC Bioinformatics; 2017 Feb; 18(1):136. PubMed ID: 28245811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DeepACLSTM: deep asymmetric convolutional long short-term memory neural models for protein secondary structure prediction.
    Guo Y; Li W; Wang B; Liu H; Zhou D
    BMC Bioinformatics; 2019 Jun; 20(1):341. PubMed ID: 31208331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs.
    Schattner P; Brooks AN; Lowe TM
    Nucleic Acids Res; 2005 Jul; 33(Web Server issue):W686-9. PubMed ID: 15980563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new ensemble residual convolutional neural network for remaining useful life estimation.
    Wen L; Dong Y; Gao L
    Math Biosci Eng; 2019 Jan; 16(2):862-880. PubMed ID: 30861669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting enhancers with deep convolutional neural networks.
    Min X; Zeng W; Chen S; Chen N; Chen T; Jiang R
    BMC Bioinformatics; 2017 Dec; 18(Suppl 13):478. PubMed ID: 29219068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Completing sparse and disconnected protein-protein network by deep learning.
    Huang L; Liao L; Wu CH
    BMC Bioinformatics; 2018 Mar; 19(1):103. PubMed ID: 29566671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel biomedical image indexing and retrieval system via deep preference learning.
    Pang S; Orgun MA; Yu Z
    Comput Methods Programs Biomed; 2018 May; 158():53-69. PubMed ID: 29544790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep learning architectures for prediction of nucleosome positioning from sequences data.
    Di Gangi M; Lo Bosco G; Rizzo R
    BMC Bioinformatics; 2018 Nov; 19(Suppl 14):418. PubMed ID: 30453896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DeepEP: a deep learning framework for identifying essential proteins.
    Zeng M; Li M; Wu FX; Li Y; Pan Y
    BMC Bioinformatics; 2019 Dec; 20(Suppl 16):506. PubMed ID: 31787076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 43.