These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 30685965)

  • 1. Determination of Energy-Level Alignment in Molecular Tunnel Junctions by Transport and Spectroscopy: Self-Consistency for the Case of Oligophenylene Thiols and Dithiols on Ag, Au, and Pt Electrodes.
    Xie Z; Bâldea I; Frisbie CD
    J Am Chem Soc; 2019 Feb; 141(8):3670-3681. PubMed ID: 30685965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental and Theoretical Analysis of Nanotransport in Oligophenylene Dithiol Junctions as a Function of Molecular Length and Contact Work Function.
    Xie Z; Bâldea I; Smith CE; Wu Y; Frisbie CD
    ACS Nano; 2015 Aug; 9(8):8022-36. PubMed ID: 26190402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy Level Alignment in Molecular Tunnel Junctions by Transport and Spectroscopy: Self-Consistency for the Case of Alkyl Thiols and Dithiols on Ag, Au, and Pt Electrodes.
    Xie Z; Bâldea I; Frisbie CD
    J Am Chem Soc; 2019 Nov; 141(45):18182-18192. PubMed ID: 31617711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular tunnel junctions based on π-conjugated oligoacene thiols and dithiols between Ag, Au, and Pt contacts: effect of surface linking group and metal work function.
    Kim B; Choi SH; Zhu XY; Frisbie CD
    J Am Chem Soc; 2011 Dec; 133(49):19864-77. PubMed ID: 22017173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantifying Image Charge Effects in Molecular Tunnel Junctions Based on Self-Assembled Monolayers of Substituted Oligophenylene Ethynylene Dithiols.
    Xie Z; Diez Cabanes V; Van Nguyen Q; Rodriguez-Gonzalez S; Norel L; Galangau O; Rigaut S; Cornil J; Frisbie CD
    ACS Appl Mater Interfaces; 2021 Dec; 13(47):56404-56412. PubMed ID: 34783518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Heteroatom Substitution on Transport in Alkanedithiol-Based Molecular Tunnel Junctions: Evidence for Universal Behavior.
    Xie Z; Bâldea I; Oram S; Smith CE; Frisbie CD
    ACS Nano; 2017 Jan; 11(1):569-578. PubMed ID: 27936325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative analysis of weak current rectification in molecular tunnel junctions subject to mechanical deformation reveals two different rectification mechanisms for oligophenylene thiols
    Xie Z; Bâldea I; Nguyen QV; Frisbie CD
    Nanoscale; 2021 Oct; 13(39):16755-16768. PubMed ID: 34604892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Length-dependent transport in molecular junctions based on SAMs of alkanethiols and alkanedithiols: effect of metal work function and applied bias on tunneling efficiency and contact resistance.
    Engelkes VB; Beebe JM; Frisbie CD
    J Am Chem Soc; 2004 Nov; 126(43):14287-96. PubMed ID: 15506797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contact resistance in metal-molecule-metal junctions based on aliphatic SAMs: effects of surface linker and metal work function.
    Beebe JM; Engelkes VB; Miller LL; Frisbie CD
    J Am Chem Soc; 2002 Sep; 124(38):11268-9. PubMed ID: 12236731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlation between HOMO alignment and contact resistance in molecular junctions: aromatic thiols versus aromatic isocyanides.
    Kim B; Beebe JM; Jun Y; Zhu XY; Frisbie CD
    J Am Chem Soc; 2006 Apr; 128(15):4970-1. PubMed ID: 16608328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Work function and temperature dependence of electron tunneling through an N-type perylene diimide molecular junction with isocyanide surface linkers.
    Smith CE; Xie Z; Bâldea I; Frisbie CD
    Nanoscale; 2018 Jan; 10(3):964-975. PubMed ID: 29192925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reversal of the Direction of Rectification Induced by Fermi Level Pinning at Molecule-Electrode Interfaces in Redox-Active Tunneling Junctions.
    Han Y; Maglione MS; Diez Cabanes V; Casado-Montenegro J; Yu X; Karuppannan SK; Zhang Z; Crivillers N; Mas-Torrent M; Rovira C; Cornil J; Veciana J; Nijhuis CA
    ACS Appl Mater Interfaces; 2020 Dec; 12(49):55044-55055. PubMed ID: 33237732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Why one can expect large rectification in molecular junctions based on alkane monothiols and why rectification is so modest.
    Xie Z; Bâldea I; Frisbie CD
    Chem Sci; 2018 May; 9(19):4456-4467. PubMed ID: 29896387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exceptionally Small Statistical Variations in the Transport Properties of Metal-Molecule-Metal Junctions Composed of 80 Oligophenylene Dithiol Molecules.
    Xie Z; Bâldea I; Demissie AT; Smith CE; Wu Y; Haugstad G; Frisbie CD
    J Am Chem Soc; 2017 Apr; 139(16):5696-5699. PubMed ID: 28394596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication and characterization of metal-molecule-metal junctions by conducting probe atomic force microscopy.
    Wold DJ; Frisbie CD
    J Am Chem Soc; 2001 Jun; 123(23):5549-56. PubMed ID: 11389638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amine-Anchored Aromatic Self-Assembled Monolayer Junction: Structure and Electric Transport Properties.
    Tian L; Martine E; Yu X; Hu W
    Langmuir; 2021 Oct; 37(41):12223-12233. PubMed ID: 34606290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical Deformation Distinguishes Tunneling Pathways in Molecular Junctions.
    Xie Z; Bâldea I; Haugstad G; Daniel Frisbie C
    J Am Chem Soc; 2019 Jan; 141(1):497-504. PubMed ID: 30525558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of Electrode Density of States on Transport through Pyridine-Linked Single Molecule Junctions.
    Adak O; Korytár R; Joe AY; Evers F; Venkataraman L
    Nano Lett; 2015 Jun; 15(6):3716-22. PubMed ID: 26020454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electron transport through thin organic films in metal--insulator--metal junctions based on self-assembled monolayers.
    Holmlin RE; Haag R; Chabinyc ML; Ismagilov RF; Cohen AE; Terfort A; Rampi MA; Whitesides GM
    J Am Chem Soc; 2001 May; 123(21):5075-85. PubMed ID: 11457338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The interface energetics of self-assembled monolayers on metals.
    Heimel G; Romaner L; Zojer E; Bredas JL
    Acc Chem Res; 2008 Jun; 41(6):721-9. PubMed ID: 18507404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.