These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 30686082)

  • 1. A reflection on the possibility of finding a good surrogate.
    Alonso A; Meyvisch P; Van der Elst W; Molenberghs G; Verbeke G
    J Biopharm Stat; 2019; 29(3):468-477. PubMed ID: 30686082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An information-theoretic approach for the evaluation of surrogate endpoints based on causal inference.
    Alonso A; Van der Elst W; Molenberghs G; Buyse M; Burzykowski T
    Biometrics; 2016 Sep; 72(3):669-77. PubMed ID: 26864244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing the predictive value of a binary surrogate for a binary true endpoint based on the minimum probability of a prediction error.
    Meyvisch P; Alonso A; Van der Elst W; Molenberghs G
    Pharm Stat; 2019 May; 18(3):304-315. PubMed ID: 30575256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A maximum entropy approach for the evaluation of surrogate endpoints based on causal inference.
    Alonso A; Van der Elst W; Molenberghs G
    Stat Med; 2018 Dec; 37(29):4525-4538. PubMed ID: 30141219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inference for Surrogate Endpoint Validation in the Binary Case.
    Bebu I; Mathew T; Agan B
    J Biopharm Stat; 2015; 25(6):1272-84. PubMed ID: 25616958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring the relationship between the causal-inference and meta-analytic paradigms for the evaluation of surrogate endpoints.
    Van der Elst W; Molenberghs G; Alonso A
    Stat Med; 2016 Apr; 35(8):1281-98. PubMed ID: 26612787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Information theory-based surrogate marker evaluation from several randomized clinical trials with binary endpoints, using SAS.
    Tilahun A; Pryseley A; Alonso A; Molenberghs G
    J Biopharm Stat; 2008; 18(2):326-41. PubMed ID: 18327724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the relationship between the causal-inference and meta-analytic paradigms for the validation of surrogate endpoints.
    Alonso A; Van der Elst W; Molenberghs G; Buyse M; Burzykowski T
    Biometrics; 2015 Mar; 71(1):15-24. PubMed ID: 25274284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Odds ratio for 2 × 2 tables: Mantel-Haenszel estimator, profile likelihood, and presence of surrogate responses.
    Banerjee B; Biswas A
    J Biopharm Stat; 2014; 24(3):649-59. PubMed ID: 24697719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A reflection on the causal interpretation of individual-level surrogacy.
    Alonso A; Van Der Elst W; Molenberghs G; Florez AJ
    J Biopharm Stat; 2019; 29(3):529-540. PubMed ID: 30773114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simple meta-analytic approach for using a binary surrogate endpoint to predict the effect of intervention on true endpoint.
    Baker SG
    Biostatistics; 2006 Jan; 7(1):58-70. PubMed ID: 15972889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the relationship between association and surrogacy when both the surrogate and true endpoint are binary outcomes.
    Meyvisch P; Alonso A; Van der Elst W; Molenberghs G
    Stat Med; 2020 Nov; 39(26):3867-3878. PubMed ID: 32875590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing a surrogate predictive value: a causal inference approach.
    Alonso A; Van der Elst W; Meyvisch P
    Stat Med; 2017 Mar; 36(7):1083-1098. PubMed ID: 27966231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A perfect correlate does not a surrogate make.
    Baker SG; Kramer BS
    BMC Med Res Methodol; 2003 Sep; 3():16. PubMed ID: 12962545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How to use frailtypack for validating failure-time surrogate endpoints using individual patient data from meta-analyses of randomized controlled trials.
    Sofeu CL; Rondeau V
    PLoS One; 2020; 15(1):e0228098. PubMed ID: 31990928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Statistical challenges in the evaluation of surrogate endpoints in randomized trials.
    Molenberghs G; Buyse M; Geys H; Renard D; Burzykowski T; Alonso A
    Control Clin Trials; 2002 Dec; 23(6):607-25. PubMed ID: 12505240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Links between analysis of surrogate endpoints and endogeneity.
    Ghosh D; Elliott MR; Taylor JM
    Stat Med; 2010 Dec; 29(28):2869-79. PubMed ID: 20803482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An information-theoretic approach to surrogate-marker evaluation with failure time endpoints.
    Pryseley A; Tilahun A; Alonso A; Molenberghs G
    Lifetime Data Anal; 2011 Apr; 17(2):195-214. PubMed ID: 20878357
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Statistical controversies in clinical research: an initial evaluation of a surrogate end point using a single randomized clinical trial and the Prentice criteria.
    Heller G
    Ann Oncol; 2015 Oct; 26(10):2012-6. PubMed ID: 26254442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluating surrogate endpoints.
    Hughes MD
    Control Clin Trials; 2002 Dec; 23(6):703-7. PubMed ID: 12505247
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.