These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 30686113)

  • 21. [Cofactor engineering strategy for enhanced S-adenosylmethionine production in Saccharomyces cerevisiae].
    Chen Y
    Sheng Wu Gong Cheng Xue Bao; 2018 Feb; 34(2):246-254. PubMed ID: 29424138
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Breeding of Saccharomyces cerevisiae with a High-Throughput Screening Strategy for Improvement of S-Adenosyl-L-Methionine Production.
    Hu ZC; Tao YC; Pan JC; Zheng CM; Wang YS; Xue YP; Liu ZQ; Zheng YG
    Appl Biochem Biotechnol; 2024 Mar; 196(3):1450-1463. PubMed ID: 37418127
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improving the productivity of S-adenosyl-l-methionine by metabolic engineering in an industrial Saccharomyces cerevisiae strain.
    Zhao W; Hang B; Zhu X; Wang R; Shen M; Huang L; Xu Z
    J Biotechnol; 2016 Oct; 236():64-70. PubMed ID: 27510807
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Overexpression of yeast S-adenosylmethionine synthetase metK in Streptomyces actuosus leads to increased production of nosiheptide.
    Zhang X; Fen M; Shi X; Bai L; Zhou P
    Appl Microbiol Biotechnol; 2008 Apr; 78(6):991-5. PubMed ID: 18330566
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of a novel variant of the yeast γ-glutamyl kinase Pro1 on its enzymatic activity and sake brewing.
    Murakami N; Kotaka A; Isogai S; Ashida K; Nishimura A; Matsumura K; Hata Y; Ishida H; Takagi H
    J Ind Microbiol Biotechnol; 2020 Oct; 47(9-10):715-723. PubMed ID: 32748014
    [TBL] [Abstract][Full Text] [Related]  

  • 26. (13)C-metabolic flux analysis in S-adenosyl-L-methionine production by Saccharomyces cerevisiae.
    Hayakawa K; Kajihata S; Matsuda F; Shimizu H
    J Biosci Bioeng; 2015 Nov; 120(5):532-8. PubMed ID: 25912448
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification and functional reconstitution of yeast mitochondrial carrier for S-adenosylmethionine.
    Marobbio CM; Agrimi G; Lasorsa FM; Palmieri F
    EMBO J; 2003 Nov; 22(22):5975-82. PubMed ID: 14609944
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanism of high folate accumulation in a sake yeast other than Kyokai yeasts.
    Shibata Y; Yamada T; Morimoto T; Fujii T; Akao T; Goshima T; Takahashi T; Tanaka N
    J Biosci Bioeng; 2020 Jan; 129(1):1-5. PubMed ID: 31515157
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-level production of ornithine by expression of the feedback inhibition-insensitive N-acetyl glutamate kinase in the sake yeast Saccharomyces cerevisiae.
    Ohashi M; Nasuno R; Isogai S; Takagi H
    Metab Eng; 2020 Nov; 62():1-9. PubMed ID: 32805427
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Combinatorial gene overexpression and recessive mutant gene introduction in sake yeast.
    Ano A; Suehiro D; Cha-Aim K; Aritomi K; Phonimdaeng P; Nontaso N; Hoshida H; Mizunuma M; Miyakawa T; Akada R
    Biosci Biotechnol Biochem; 2009 Mar; 73(3):633-40. PubMed ID: 19270382
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Expression of secreted His-tagged S-adenosylmethionine synthetase in the methylotrophic yeast Pichia pastoris and its characterization, one-step purification, and immobilization.
    Luo Y; Yuan Z; Luo G; Zhao F
    Biotechnol Prog; 2008; 24(1):214-20. PubMed ID: 18078345
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improving methionine and ATP availability by MET6 and SAM2 co-expression combined with sodium citrate feeding enhanced SAM accumulation in Saccharomyces cerevisiae.
    Chen H; Wang Z; Wang Z; Dou J; Zhou C
    World J Microbiol Biotechnol; 2016 Apr; 32(4):56. PubMed ID: 26925618
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Awa1p on the cell surface of sake yeast inhibits biofilm formation and the co-aggregation between sake yeasts and Lactobacillus plantarum ML11-11.
    Hirayama S; Shimizu M; Tsuchiya N; Furukawa S; Watanabe D; Shimoi H; Takagi H; Ogihara H; Morinaga Y
    J Biosci Bioeng; 2015 May; 119(5):532-7. PubMed ID: 25454063
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improving ATP availability by sod1 deletion with a strategy of precursor feeding enhanced S-adenosyl-L-methionine accumulation in Saccharomyces cerevisiae.
    Hu ZC; Zheng CM; Tao YC; Wang SN; Wang YS; Liu ZQ; Zheng YG
    Enzyme Microb Technol; 2023 Mar; 164():110189. PubMed ID: 36586225
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Improvement of SAM Accumulation by Integrating the Endogenous Methionine Adenosyltransferase Gene SAM2 in Genome of the Industrial Saccharomyces cerevisiae Strain.
    Zhao W; Shi F; Hang B; Huang L; Cai J; Xu Z
    Appl Biochem Biotechnol; 2016 Mar; 178(6):1263-72. PubMed ID: 26728652
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Breeding sake yeast and identification of mutation patterns by synchrotron light irradiation.
    Baba S; Hamasaki T; Sawada K; Orita R; Nagano Y; Kimura K; Goto M; Kobayashi G
    J Biosci Bioeng; 2021 Sep; 132(3):265-270. PubMed ID: 34088597
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Expression, purification, and characterization of recombinant Saccharomyces cerevisiae adenosine kinase.
    Lu XB; Wu HZ; Ye J; Fan Y; Zhang HZ
    Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai); 2003 Jul; 35(7):666-70. PubMed ID: 12883639
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transport of S-adenosylmethionine in Saccharomyces cerevisiae.
    Murphy JT; Spence KD
    J Bacteriol; 1972 Feb; 109(2):499-504. PubMed ID: 4550811
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Isolation of a spontaneous cerulenin-resistant sake yeast with both high ethyl caproate-producing ability and normal checkpoint integrity.
    Tamura H; Okada H; Kume K; Koyano T; Goshima T; Nakamura R; Akao T; Shimoi H; Mizunuma M; Ohya Y; Hirata D
    Biosci Biotechnol Biochem; 2015; 79(7):1191-9. PubMed ID: 25787154
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cordycepin kills Mycobacterium tuberculosis through hijacking the bacterial adenosine kinase.
    Huang F; Li W; Xu H; Qin H; He ZG
    PLoS One; 2019; 14(6):e0218449. PubMed ID: 31199855
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.