BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 30686147)

  • 1. Response of Sweet Sorghum Lines to Stalk Pathogens Fusarium thapsinum and Macrophomina phaseolina.
    Funnell-Harris DL; O'Neill PM; Sattler SE; Yerka MK
    Plant Dis; 2016 May; 100(5):896-903. PubMed ID: 30686147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Response of Sorghum Enhanced in Monolignol Biosynthesis to Stalk Rot Pathogens.
    Funnell-Harris DL; Sattler SE; O'Neill PM; Gries T; Tetreault HM; Clemente TE
    Plant Dis; 2019 Sep; 103(9):2277-2287. PubMed ID: 31215851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impacts of Fungal Stalk Rot Pathogens on Physicochemical Properties of Sorghum Grain.
    Bandara YMAY; Tesso TT; Bean SR; Dowell FE; Little CR
    Plant Dis; 2017 Dec; 101(12):2059-2065. PubMed ID: 30677372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phenylpropanoids Following Wounding and Infection of Sweet Sorghum Lines Differing in Responses to Stalk Pathogens.
    Khasin M; Bernhardson LF; O'Neill PM; Palmer NA; Scully ED; Sattler SE; Sarath G; Funnell-Harris DL
    Phytopathology; 2024 Jan; 114(1):177-192. PubMed ID: 37486162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Altering Three Steps of Monolignol Biosynthesis on Sorghum Responses to Stalk Pathogens and Water Deficit.
    Funnell-Harris DL; Sattler SE; O'Neill PM; Gries T; Ge Z; Nersesian N
    Plant Dis; 2023 Dec; 107(12):3984-3995. PubMed ID: 37430480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stalk Rot Fungi Affect Leaf Greenness (SPAD) of Grain Sorghum in a Genotype- and Growth-Stage-Specific Manner.
    Bandara YMAY; Weerasooriya DK; Tesso TT; Little CR
    Plant Dis; 2016 Oct; 100(10):2062-2068. PubMed ID: 30682992
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Response of Fusarium thapsinum to Sorghum brown midrib Lines and to Phenolic Metabolites.
    Funnell-Harris DL; Sattler SE; Pedersen JF
    Plant Dis; 2014 Oct; 98(10):1300-1308. PubMed ID: 30703939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-Wide Association Study on Resistance to Stalk Rot Diseases in Grain Sorghum.
    Adeyanju A; Little C; Yu J; Tesso T
    G3 (Bethesda); 2015 Apr; 5(6):1165-75. PubMed ID: 25882062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Necrotrophic Fungus Macrophomina phaseolina Promotes Charcoal Rot Susceptibility in Grain Sorghum Through Induced Host Cell-Wall-Degrading Enzymes.
    Bandara YMAY; Weerasooriya DK; Liu S; Little CR
    Phytopathology; 2018 Aug; 108(8):948-956. PubMed ID: 29465007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pathogen and drought stress affect cell wall and phytohormone signaling to shape host responses in a sorghum COMT bmr12 mutant.
    Khasin M; Bernhardson LF; O'Neill PM; Palmer NA; Scully ED; Sattler SE; Funnell-Harris DL
    BMC Plant Biol; 2021 Aug; 21(1):391. PubMed ID: 34418969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of pathogenesis-related protein PR-10 in sorghum floral tissues in response to inoculation with Fusarium thapsinum and Curvularia lunata.
    Katilé SO; Perumal R; Rooney WL; Prom LK; Magill CW
    Mol Plant Pathol; 2010 Jan; 11(1):93-103. PubMed ID: 20078779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genotypic variation in sorghum [Sorghum bicolor (L.) Moench] exotic germplasm collections for drought and disease tolerance.
    Kapanigowda MH; Perumal R; Djanaguiraman M; Aiken RM; Tesso T; Prasad PV; Little CR
    Springerplus; 2013; 2():650. PubMed ID: 24349954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of chitinase and sormatin accumulation in the resistance of sorghum cultivars to grain mold.
    Prom LK; Waniska RD; Kollo AI; Rooney WL; Bejosano FP
    J Agric Food Chem; 2005 Jul; 53(14):5565-70. PubMed ID: 15998115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interrelationships Among Macrophomina phaseolina, Criconemella xenoplax, and Tylenchorhynchus annulatus on Grain Sorghum.
    Wenefrida I; McGawley EC; Russin JS
    J Nematol; 1997 Jun; 29(2):199-208. PubMed ID: 19274150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Draft Genome Resource for
    Purushotham N; Jones A; Poudel B; Nasim J; Adorada D; Sparks A; Schwessinger B; Vaghefi N
    Mol Plant Microbe Interact; 2020 May; 33(5):724-726. PubMed ID: 32096690
    [No Abstract]   [Full Text] [Related]  

  • 16. Identification and Characterization of a
    Gopalakrishnan S; Sharma R; Srinivas V; Naresh N; Mishra SP; Ankati S; Pratyusha S; Govindaraj M; Gonzalez SV; Nervik S; Simic N
    Plants (Basel); 2020 Dec; 9(12):. PubMed ID: 33297539
    [No Abstract]   [Full Text] [Related]  

  • 17. Aggressiveness of Colletotrichum sublineola Strains from Sorghum bicolor and S. halepense to Sweet Sorghum Variety Sugar Drip, and Their Impact on Yield.
    Xavier KV; Pfeiffer T; Parreira DF; Chopra S; Vaillancourt L
    Plant Dis; 2017 Sep; 101(9):1578-1587. PubMed ID: 30677336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deciphering the antagonistic effect of Streptomyces spp. and host-plant resistance induction against charcoal rot of sorghum.
    Gopalakrishnan S; Srinivas V; Naresh N; Pratyusha S; Ankati S; Madhuprakash J; Govindaraj M; Sharma R
    Planta; 2021 Feb; 253(2):57. PubMed ID: 33532924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The First Annotated Genome Assembly of Macrophomina tecta Associated with Charcoal Rot of Sorghum.
    Poudel B; Purushotham N; Jones A; Nasim J; Adorada DL; Sparks AH; Schwessinger B; Vaghefi N
    Genome Biol Evol; 2022 May; 14(6):. PubMed ID: 35647618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Yield Response to Mexican Rice Borer (Lepidoptera: Crambidae) Injury in Bioenergy and Conventional Sugarcane and Sorghum.
    Vanweelden MT; Wilson BE; Beuzelin JM; Reagan TE; Way MO
    J Econ Entomol; 2015 Oct; 108(5):2296-304. PubMed ID: 26453718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.