These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 30686412)

  • 41. DNA methylation changes in response to ocean acidification at the time of larval metamorphosis in the edible oyster, Crassostrea hongkongensis.
    Lim YK; Cheung K; Dang X; Roberts SB; Wang X; Thiyagarajan V
    Mar Environ Res; 2021 Jan; 163():105214. PubMed ID: 33221553
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of ocean acidification on growth, calcification, and gene expression in the pearl oyster, Pinctada fucata.
    Liu W; Yu Z; Huang X; Shi Y; Lin J; Zhang H; Yi X; He M
    Mar Environ Res; 2017 Sep; 130():174-180. PubMed ID: 28760624
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Changes in the biochemical and nutrient composition of seafood due to ocean acidification and warming.
    Lemasson AJ; Hall-Spencer JM; Kuri V; Knights AM
    Mar Environ Res; 2019 Jan; 143():82-92. PubMed ID: 30471787
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mechanical properties of deep-sea molluscan shell.
    Hrabánková I; Frýda J; Sepitka J; Sasaki T; Frýdová B; Lukeš J
    Comput Methods Biomech Biomed Engin; 2013; 16 Suppl 1():287-9. PubMed ID: 23923945
    [No Abstract]   [Full Text] [Related]  

  • 45. Limacina helicina shell dissolution as an indicator of declining habitat suitability owing to ocean acidification in the California Current Ecosystem.
    Bednaršek N; Feely RA; Reum JC; Peterson B; Menkel J; Alin SR; Hales B
    Proc Biol Sci; 2014 Jun; 281(1785):20140123. PubMed ID: 24789895
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Evolution and biomineralization of pteropod shells.
    Ramos-Silva P; Wall-Palmer D; Marlétaz F; Marin F; Peijnenburg KTCA
    J Struct Biol; 2021 Dec; 213(4):107779. PubMed ID: 34474158
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mussel larvae modify calcifying fluid carbonate chemistry to promote calcification.
    Ramesh K; Hu MY; Thomsen J; Bleich M; Melzner F
    Nat Commun; 2017 Nov; 8(1):1709. PubMed ID: 29167466
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ocean life breaking rules by building shells in acidic extremes.
    Doubleday ZA; Nagelkerken I; Connell SD
    Curr Biol; 2017 Oct; 27(20):R1104-R1106. PubMed ID: 29065288
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ocean acidification bends the mermaid's wineglass.
    Newcomb LA; Milazzo M; Hall-Spencer JM; Carrington E
    Biol Lett; 2015 Sep; 11(9):20141075. PubMed ID: 26562936
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Molecular adaptation of molluscan biomineralisation to high-CO
    Chandra Rajan K; Vengatesen T
    Mar Environ Res; 2020 Mar; 155():104883. PubMed ID: 32072987
    [TBL] [Abstract][Full Text] [Related]  

  • 51. From reproductive behaviour to responses to predators: Ocean acidification does not impact the behaviour of an herbivorous marine gastropod.
    Roussel S; Coheleach M; Martin S; Day R; Badou A; Huchette S; Dubois P; Servili A; Gaillard F; Auzoux-Bordenave S
    Sci Total Environ; 2024 Jan; 907():167526. PubMed ID: 37793449
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Aragonite undersaturation in the Arctic Ocean: effects of ocean acidification and sea ice melt.
    Yamamoto-Kawai M; McLaughlin FA; Carmack EC; Nishino S; Shimada K
    Science; 2009 Nov; 326(5956):1098-100. PubMed ID: 19965425
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Carbon dioxide addition to coral reef waters suppresses net community calcification.
    Albright R; Takeshita Y; Koweek DA; Ninokawa A; Wolfe K; Rivlin T; Nebuchina Y; Young J; Caldeira K
    Nature; 2018 Mar; 555(7697):516-519. PubMed ID: 29539634
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Differential reaction norms to ocean acidification in two oyster species from contrasting habitats.
    Caillon C; Pernet F; Lutier M; Di Poi C
    J Exp Biol; 2023 Dec; 226(23):. PubMed ID: 37942639
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Crystallographic reorganization of the calcitic prismatic layer of oysters.
    Checa AG; Esteban-Delgado FJ; Ramírez-Rico J; Rodríguez-Navarro AB
    J Struct Biol; 2009 Sep; 167(3):261-70. PubMed ID: 19540344
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Elevated CO2 affects shell dissolution rate but not calcification rate in a marine snail.
    Nienhuis S; Palmer AR; Harley CD
    Proc Biol Sci; 2010 Aug; 277(1693):2553-8. PubMed ID: 20392726
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Gene expression correlated with delay in shell formation in larval Pacific oysters (Crassostrea gigas) exposed to experimental ocean acidification provides insights into shell formation mechanisms.
    De Wit P; Durland E; Ventura A; Langdon CJ
    BMC Genomics; 2018 Feb; 19(1):160. PubMed ID: 29471790
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ocean acidification induces biochemical and morphological changes in the calcification process of large benthic foraminifera.
    Prazeres M; Uthicke S; Pandolfi JM
    Proc Biol Sci; 2015 Mar; 282(1803):20142782. PubMed ID: 25694619
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ocean acidification unprecedented, unsettling.
    Kerr RA
    Science; 2010 Jun; 328(5985):1500-1. PubMed ID: 20558701
    [No Abstract]   [Full Text] [Related]  

  • 60. Thicker Shells Compensate Extensive Dissolution in Brachiopods under Future Ocean Acidification.
    Cross EL; Harper EM; Peck LS
    Environ Sci Technol; 2019 May; 53(9):5016-5026. PubMed ID: 30925214
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.