These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 30686488)

  • 21. Phenotypes of
    Flåtten I; Helgesen E; Pedersen IB; Waldminghaus T; Rothe C; Taipale R; Johnsen L; Skarstad K
    J Bacteriol; 2017 Dec; 199(24):. PubMed ID: 28947673
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bacillus subtilis DNA polymerase III is required for the replication of DNA of bacteriophages SPP-1 and phi 105.
    Rowley SD; Brown NC
    J Virol; 1977 Feb; 21(2):493-6. PubMed ID: 401898
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The DNA replication machine of a gram-positive organism.
    Bruck I; O'Donnell M
    J Biol Chem; 2000 Sep; 275(37):28971-83. PubMed ID: 10878011
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Replication-associated purine asymmetry may contribute to strand-biased gene distribution.
    Hu J; Zhao X; Yu J
    Genomics; 2007 Aug; 90(2):186-94. PubMed ID: 17532183
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bacterial replisomes.
    Xu ZQ; Dixon NE
    Curr Opin Struct Biol; 2018 Dec; 53():159-168. PubMed ID: 30292863
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The replicase sliding clamp dynamically accumulates behind progressing replication forks in Bacillus subtilis cells.
    Su'etsugu M; Errington J
    Mol Cell; 2011 Mar; 41(6):720-32. PubMed ID: 21419346
    [TBL] [Abstract][Full Text] [Related]  

  • 27. DnaN clamp zones provide a platform for spatiotemporal coupling of mismatch detection to DNA replication.
    Lenhart JS; Sharma A; Hingorani MM; Simmons LA
    Mol Microbiol; 2013 Feb; 87(3):553-68. PubMed ID: 23228104
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Anticipating chromosomal replication fork arrest: SSB targets repair DNA helicases to active forks.
    Lecointe F; Sérèna C; Velten M; Costes A; McGovern S; Meile JC; Errington J; Ehrlich SD; Noirot P; Polard P
    EMBO J; 2007 Oct; 26(19):4239-51. PubMed ID: 17853894
    [TBL] [Abstract][Full Text] [Related]  

  • 29. DNA synthesis in vivo in Bacillus subtilis.
    Andersen JJ
    J Mol Biol; 1976 Sep; 106(2):285-95. PubMed ID: 824451
    [No Abstract]   [Full Text] [Related]  

  • 30. DNA polymerase I acts in translesion synthesis mediated by the Y-polymerases in Bacillus subtilis.
    Duigou S; Ehrlich SD; Noirot P; Noirot-Gros MF
    Mol Microbiol; 2005 Aug; 57(3):678-90. PubMed ID: 16045613
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exchange between Escherichia coli polymerases II and III on a processivity clamp.
    Kath JE; Chang S; Scotland MK; Wilbertz JH; Jergic S; Dixon NE; Sutton MD; Loparo JJ
    Nucleic Acids Res; 2016 Feb; 44(4):1681-90. PubMed ID: 26657641
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A nucleoid-associated protein is involved in the emergence of antibiotic resistance by promoting the frequent exchange of the replicative DNA polymerase in
    Ng WL; Rego EH
    mSphere; 2024 May; 9(5):e0012224. PubMed ID: 38591887
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Subcellular localization of Dna-initiation proteins of Bacillus subtilis: evidence that chromosome replication begins at either edge of the nucleoids.
    Imai Y; Ogasawara N; Ishigo-Oka D; Kadoya R; Daito T; Moriya S
    Mol Microbiol; 2000 Jun; 36(5):1037-48. PubMed ID: 10844689
    [TBL] [Abstract][Full Text] [Related]  

  • 34. DNA polymerase III of Enterococcus faecalis: expression and characterization of recombinant enzymes encoded by the polC and dnaE genes.
    Foster KA; Barnes MH; Stephenson RO; Butler MM; Skow DJ; LaMarr WA; Brown NC
    Protein Expr Purif; 2003 Jan; 27(1):90-7. PubMed ID: 12509989
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of a triple DNA polymerase replisome.
    McInerney P; Johnson A; Katz F; O'Donnell M
    Mol Cell; 2007 Aug; 27(4):527-38. PubMed ID: 17707226
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Co-directional replication-transcription conflicts lead to replication restart.
    Merrikh H; Machón C; Grainger WH; Grossman AD; Soultanas P
    Nature; 2011 Feb; 470(7335):554-7. PubMed ID: 21350489
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Antimicrobials targeted to the replication-specific DNA polymerases of gram-positive bacteria: target potential of dnaE.
    Barnes MH; Butler MM; Wright GE; Brown NC
    Infect Disord Drug Targets; 2012 Oct; 12(5):327-31. PubMed ID: 23017159
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Replication fork reversal in DNA polymerase III mutants of Escherichia coli: a role for the beta clamp.
    Grompone G; Seigneur M; Ehrlich SD; Michel B
    Mol Microbiol; 2002 Jun; 44(5):1331-9. PubMed ID: 12028381
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bacillus subtilis tau subunit of DNA polymerase III interacts with bacteriophage SPP1 replicative DNA helicase G40P.
    Martínez-Jiménez MI; Mesa P; Alonso JC
    Nucleic Acids Res; 2002 Dec; 30(23):5056-64. PubMed ID: 12466528
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Short CCG repeat in huntingtin gene is an obstacle for replicative DNA polymerases, potentially hampering progression of replication fork.
    Le HP; Masuda Y; Tsurimoto T; Maki S; Katayama T; Furukohri A; Maki H
    Genes Cells; 2015 Oct; 20(10):817-33. PubMed ID: 26271349
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.