These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 30686911)

  • 21. A compact optofluidic cytometer with integrated liquid-core/PDMS-cladding waveguides.
    Fei P; Chen Z; Men Y; Li A; Shen Y; Huang Y
    Lab Chip; 2012 Oct; 12(19):3700-6. PubMed ID: 22699406
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Free-Space Excitation of Optofluidic Devices for Pattern-Based Single Particle Detection.
    Amin MN; Ganjalizadeh V; Hamblin M; Hawkins AR; Schmidt H
    IEEE Photonics Technol Lett; 2021 Aug; 33(16):884-887. PubMed ID: 34744399
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Integration of programmable microfluidics and on-chip fluorescence detection for biosensing applications.
    Parks JW; Olson MA; Kim J; Ozcelik D; Cai H; Carrion R; Patterson JL; Mathies RA; Hawkins AR; Schmidt H
    Biomicrofluidics; 2014 Sep; 8(5):054111. PubMed ID: 25584111
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optofluidic Tunable Lenses for In-Plane Light Manipulation.
    Chen Q; Li T; Li Z; Long J; Zhang X
    Micromachines (Basel); 2018 Feb; 9(3):. PubMed ID: 30424031
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fully integrated PDMS/SU-8/quartz microfluidic chip with a novel macroporous poly dimethylsiloxane (PDMS) membrane for isoelectric focusing of proteins using whole-channel imaging detection.
    Shameli SM; Elbuken C; Ou J; Ren CL; Pawliszyn J
    Electrophoresis; 2011 Feb; 32(3-4):333-9. PubMed ID: 21298660
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A hybrid silicon-PDMS optofluidic platform for sensing applications.
    Testa G; Persichetti G; Sarro PM; Bernini R
    Biomed Opt Express; 2014 Feb; 5(2):417-26. PubMed ID: 24575337
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Frontiers of optofluidics in synthetic biology.
    Tan C; Lo SJ; LeDuc PR; Cheng CM
    Lab Chip; 2012 Oct; 12(19):3654-65. PubMed ID: 22895798
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Acoustic focusing of beads and cells in hydrogel droplets.
    Fornell A; Pohlit H; Shi Q; Tenje M
    Sci Rep; 2021 Apr; 11(1):7479. PubMed ID: 33820916
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Polymer waveguide backplanes for optical sensor interfaces in microfluidics.
    Lee KS; Lee HL; Ram RJ
    Lab Chip; 2007 Nov; 7(11):1539-45. PubMed ID: 17960283
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Scattering detection using a photonic-microfluidic integrated device with on-chip collection capabilities.
    Watts BR; Zhang Z; Xu CQ; Cao X; Lin M
    Electrophoresis; 2014 Feb; 35(2-3):271-81. PubMed ID: 23893703
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An integrated, multiparametric flow cytometry chip using "microfluidic drifting" based three-dimensional hydrodynamic focusing.
    Mao X; Nawaz AA; Lin SC; Lapsley MI; Zhao Y; McCoy JP; El-Deiry WS; Huang TJ
    Biomicrofluidics; 2012 Jun; 6(2):24113-241139. PubMed ID: 22567082
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Simultaneous high speed optical and impedance analysis of single particles with a microfluidic cytometer.
    Barat D; Spencer D; Benazzi G; Mowlem MC; Morgan H
    Lab Chip; 2012 Jan; 12(1):118-26. PubMed ID: 22051732
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Single channel layer, single sheath-flow inlet microfluidic flow cytometer with three-dimensional hydrodynamic focusing.
    Lin SC; Yen PW; Peng CC; Tung YC
    Lab Chip; 2012 Sep; 12(17):3135-41. PubMed ID: 22763751
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optofluidic devices with integrated solid-state nanopores.
    Liu S; Hawkins AR; Schmidt H
    Mikrochim Acta; 2016 Apr; 183(4):1275-1287. PubMed ID: 27046940
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optofluidic Lab-on-a-Chip Fluorescence Sensor Using Integrated Buried ARROW (bARROW) Waveguides.
    Wall T; McMurray J; Meena G; Ganjalizadeh V; Schmidt H; Hawkins AR
    Micromachines (Basel); 2017 Aug; 8(8):. PubMed ID: 29201455
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 3D hydrodynamic focusing in microscale channels formed with two photoresist layers.
    Hamilton ES; Ganjalizadeh V; Wright JG; Pitt WG; Schmidt H; Hawkins AR
    Microfluid Nanofluidics; 2019 Nov; 23(11):. PubMed ID: 35664662
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microphotonic control of single molecule fluorescence correlation spectroscopy using planar optofluidics.
    Yin D; Lunt EJ; Barman A; Hawkins AR; Schmidt H
    Opt Express; 2007 Jun; 15(12):7290-5. PubMed ID: 19547052
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Monolithic integration of microfluidic channels, liquid-core waveguides, and silica waveguides on silicon.
    Dumais P; Callender CL; Ledderhof CJ; Noad JP
    Appl Opt; 2006 Dec; 45(36):9182-90. PubMed ID: 17151758
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing.
    Mao X; Lin SC; Dong C; Huang TJ
    Lab Chip; 2009 Jun; 9(11):1583-9. PubMed ID: 19458866
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Critical Review on the Sensing, Control, and Manipulation of Single Molecules on Optofluidic Devices.
    Rahman M; Islam KR; Islam MR; Islam MJ; Kaysir MR; Akter M; Rahman MA; Alam SMM
    Micromachines (Basel); 2022 Jun; 13(6):. PubMed ID: 35744582
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.