BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 30686945)

  • 1. A Library of Potential Nanoparticle Contrast Agents for X-Ray Fluorescence Tomography Bioimaging.
    Li Y; Shaker K; Larsson JC; Vogt C; Hertz HM; Toprak MS
    Contrast Media Mol Imaging; 2018; 2018():8174820. PubMed ID: 30686945
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The feasibility of NaGdF
    Zhang W; Zhang S; Gao P; Lan B; Li L; Zhang X; Li L; Lu H
    Med Phys; 2020 Feb; 47(2):662-671. PubMed ID: 31742714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-spatial-resolution x-ray fluorescence tomography with spectrally matched nanoparticles.
    Larsson JC; Vogt C; Vågberg W; Toprak MS; Dzieran J; Arsenian-Henriksson M; Hertz HM
    Phys Med Biol; 2018 Aug; 63(16):164001. PubMed ID: 30033936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative imaging of gold nanoparticle distribution in a tumor-bearing mouse using benchtop x-ray fluorescence computed tomography.
    Manohar N; Reynoso FJ; Diagaradjane P; Krishnan S; Cho SH
    Sci Rep; 2016 Feb; 6():22079. PubMed ID: 26912068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of FLUKA, PENELOPE and MCNP6 Monte Carlo codes for estimating gold fluorescence applied to the detection of gold-infused tumoral volumes.
    Malano F; Mattea F; Geser FA; Pérez P; Barraco D; Santibáñez M; Figueroa R; Valente M
    Appl Radiat Isot; 2019 Sep; 151():280-288. PubMed ID: 31229928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental demonstration of direct L-shell x-ray fluorescence imaging of gold nanoparticles using a benchtop x-ray source.
    Manohar N; Reynoso FJ; Cho SH
    Med Phys; 2013 Aug; 40(8):080702. PubMed ID: 23927295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous synthesis and amine-functionalization of single-phase BaYF5:Yb/Er nanoprobe for dual-modal in vivo upconversion fluorescence and long-lasting X-ray computed tomography imaging.
    Liu H; Lu W; Wang H; Rao L; Yi Z; Zeng S; Hao J
    Nanoscale; 2013 Jul; 5(13):6023-9. PubMed ID: 23715609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Monte Carlo Model of a Benchtop X-Ray Fluorescence Computed Tomography System and Its Application to Validate a Deconvolution-Based X-Ray Fluorescence Signal Extraction Method.
    Ahmed MF; Yasar S; Cho SH
    IEEE Trans Med Imaging; 2018 Nov; 37(11):2483-2492. PubMed ID: 29994762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pinhole X-ray fluorescence imaging of gadolinium and gold nanoparticles using polychromatic X-rays: a Monte Carlo study.
    Jung S; Sung W; Ye SJ
    Int J Nanomedicine; 2017; 12():5805-5817. PubMed ID: 28860750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative Imaging of Gd Nanoparticles in Mice Using Benchtop Cone-Beam X-ray Fluorescence Computed Tomography System.
    Zhang S; Li L; Chen J; Chen Z; Zhang W; Lu H
    Int J Mol Sci; 2019 May; 20(9):. PubMed ID: 31083339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual imaging modality of fluorescence and transmission X-rays for gold nanoparticle-injected living mice.
    Kim T; Lee WS; Jeon M; Kim H; Eom M; Jung S; Im HJ; Ye SJ
    Med Phys; 2023 Jan; 50(1):529-539. PubMed ID: 36367111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional x-ray fluorescence mapping of a gold nanoparticle-loaded phantom.
    Ren L; Wu D; Li Y; Wang G; Wu X; Liu H
    Med Phys; 2014 Mar; 41(3):031902. PubMed ID: 24593720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical and X-ray Fluorescent Nanoparticles for Dual Mode Bioimaging.
    Saladino GM; Vogt C; Li Y; Shaker K; Brodin B; Svenda M; Hertz HM; Toprak MS
    ACS Nano; 2021 Mar; 15(3):5077-5085. PubMed ID: 33587608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of a table-top x-ray fluorescence computed tomography (XFCT) system.
    Dunning CAS; Bazalova-Carter M
    Phys Med Biol; 2018 Nov; 63(23):235013. PubMed ID: 30474621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. First demonstration of multiplexed X-ray fluorescence computed tomography (XFCT) imaging.
    Kuang Y; Pratx G; Bazalova M; Meng B; Qian J; Xing L
    IEEE Trans Med Imaging; 2013 Feb; 32(2):262-7. PubMed ID: 23076031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of an attenuation correction method for direct x-ray fluorescence (XRF) imaging utilizing gold L-shell XRF photons.
    Ahmed MF; Yasar S; Cho SH
    Med Phys; 2018 Dec; 45(12):5543-5554. PubMed ID: 30307623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Longitudinal In-Vivo X-Ray Fluorescence Computed Tomography With Molybdenum Nanoparticles.
    Shaker K; Vogt C; Katsu-Jimenez Y; Kuiper RV; Andersson K; Li Y; Larsson JC; Rodriguez-Garcia A; Toprak MS; Arsenian-Henriksson M; Hertz HM
    IEEE Trans Med Imaging; 2020 Dec; 39(12):3910-3919. PubMed ID: 32746133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laboratory x-ray fluorescence tomography for high-resolution nanoparticle bio-imaging.
    Hertz HM; Larsson JC; Lundström U; Larsson DH; Vogt C
    Opt Lett; 2014 May; 39(9):2790-3. PubMed ID: 24784104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon Quantum Dots Conjugated Rhodium Nanoparticles as Hybrid Multimodal Contrast Agents.
    Saladino GM; Kilic NI; Brodin B; Hamawandi B; Yazgan I; Hertz HM; Toprak MS
    Nanomaterials (Basel); 2021 Aug; 11(9):. PubMed ID: 34578481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Proposed Computed Tomography Contrast Agent Using Carboxybetaine Zwitterionic Tantalum Oxide Nanoparticles: Imaging, Biological, and Physicochemical Performance.
    FitzGerald PF; Butts MD; Roberts JC; Colborn RE; Torres AS; Lee BD; Yeh BM; Bonitatibus PJ
    Invest Radiol; 2016 Dec; 51(12):786-796. PubMed ID: 27115702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.