These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 30687057)
1. Acceptability Study of A3-K3 Robotic Architecture for a Neurorobotics Painting. Tramonte S; Sorbello R; Guger C; Chella A Front Neurorobot; 2018; 12():81. PubMed ID: 30687057 [TBL] [Abstract][Full Text] [Related]
2. Passive Brain-Computer Interfaces for Enhanced Human-Robot Interaction. Alimardani M; Hiraki K Front Robot AI; 2020; 7():125. PubMed ID: 33501291 [TBL] [Abstract][Full Text] [Related]
3. A Multimodal Emotional Human-Robot Interaction Architecture for Social Robots Engaged in Bidirectional Communication. Hong A; Lunscher N; Hu T; Tsuboi Y; Zhang X; Franco Dos Reis Alves S; Nejat G; Benhabib B IEEE Trans Cybern; 2021 Dec; 51(12):5954-5968. PubMed ID: 32149676 [TBL] [Abstract][Full Text] [Related]
4. Soft brain-machine interfaces for assistive robotics: A novel control approach. Schiatti L; Tessadori J; Barresi G; Mattos LS; Ajoudani A IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():863-869. PubMed ID: 28813929 [TBL] [Abstract][Full Text] [Related]
5. A hybrid brain interface for a humanoid robot assistant. Finke A; Knoblauch A; Koesling H; Ritter H Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7421-4. PubMed ID: 22256054 [TBL] [Abstract][Full Text] [Related]
6. Robot Learning of Assistive Manipulation Tasks by Demonstration via Head Gesture-based Interface. Kyrarini M; Zheng Q; Haseeb MA; Graser A IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():1139-1146. PubMed ID: 31374783 [TBL] [Abstract][Full Text] [Related]
7. Augmented-reality based brain-computer interface of robot control. Hu J Heliyon; 2024 Mar; 10(5):e26255. PubMed ID: 38449664 [TBL] [Abstract][Full Text] [Related]
8. RISE: an open-source architecture for interdisciplinary and reproducible human-robot interaction research. Groß A; Schütze C; Brandt M; Wrede B; Richter B Front Robot AI; 2023; 10():1245501. PubMed ID: 38130401 [TBL] [Abstract][Full Text] [Related]
9. Control architecture for human-robot integration: application to a robotic wheelchair. Galindo C; Gonzalez J; Fernández-Madrigal JA IEEE Trans Syst Man Cybern B Cybern; 2006 Oct; 36(5):1053-67. PubMed ID: 17036812 [TBL] [Abstract][Full Text] [Related]
10. Intuitive control of mobile robots: an architecture for autonomous adaptive dynamic behaviour integration. Melidis C; Iizuka H; Marocco D Cogn Process; 2018 May; 19(2):245-264. PubMed ID: 28585090 [TBL] [Abstract][Full Text] [Related]
11. Connecting Artificial Brains to Robots in a Comprehensive Simulation Framework: The Neurorobotics Platform. Falotico E; Vannucci L; Ambrosano A; Albanese U; Ulbrich S; Vasquez Tieck JC; Hinkel G; Kaiser J; Peric I; Denninger O; Cauli N; Kirtay M; Roennau A; Klinker G; Von Arnim A; Guyot L; Peppicelli D; Martínez-Cañada P; Ros E; Maier P; Weber S; Huber M; Plecher D; Röhrbein F; Deser S; Roitberg A; van der Smagt P; Dillman R; Levi P; Laschi C; Knoll AC; Gewaltig MO Front Neurorobot; 2017; 11():2. PubMed ID: 28179882 [TBL] [Abstract][Full Text] [Related]
12. HRI usability evaluation of interaction modes for a teleoperated agricultural robotic sprayer. Adamides G; Katsanos C; Parmet Y; Christou G; Xenos M; Hadzilacos T; Edan Y Appl Ergon; 2017 Jul; 62():237-246. PubMed ID: 28411734 [TBL] [Abstract][Full Text] [Related]
13. Long-term independent brain-computer interface home use improves quality of life of a patient in the locked-in state: a case study. Holz EM; Botrel L; Kaufmann T; Kübler A Arch Phys Med Rehabil; 2015 Mar; 96(3 Suppl):S16-26. PubMed ID: 25721543 [TBL] [Abstract][Full Text] [Related]
14. Promoting Interactions Between Humans and Robots Using Robotic Emotional Behavior. Ficocelli M; Terao J; Nejat G IEEE Trans Cybern; 2016 Dec; 46(12):2911-2923. PubMed ID: 26552105 [TBL] [Abstract][Full Text] [Related]
15. Control of a 7-DOF Robotic Arm System With an SSVEP-Based BCI. Chen X; Zhao B; Wang Y; Xu S; Gao X Int J Neural Syst; 2018 Oct; 28(8):1850018. PubMed ID: 29768990 [TBL] [Abstract][Full Text] [Related]
16. Semi-Autonomous Robotic Arm Reaching With Hybrid Gaze-Brain Machine Interface. Zeng H; Shen Y; Hu X; Song A; Xu B; Li H; Wang Y; Wen P Front Neurorobot; 2019; 13():111. PubMed ID: 32038219 [TBL] [Abstract][Full Text] [Related]
17. A COVID-19 Emergency Response for Remote Control of a Dialysis Machine with Mobile HRI. Wazir HK; Lourido C; Chacko SM; Kapila V Front Robot AI; 2021; 8():612855. PubMed ID: 34262944 [TBL] [Abstract][Full Text] [Related]
18. Communication and knowledge sharing in human-robot interaction and learning from demonstration. Koenig N; Takayama L; Matarić M Neural Netw; 2010; 23(8-9):1104-12. PubMed ID: 20598503 [TBL] [Abstract][Full Text] [Related]
19. A Brain-Robot Interaction System by Fusing Human and Machine Intelligence. Mao X; Li W; Lei C; Jin J; Duan F; Chen S IEEE Trans Neural Syst Rehabil Eng; 2019 Mar; 27(3):533-542. PubMed ID: 30716043 [TBL] [Abstract][Full Text] [Related]
20. Local and Remote Cooperation With Virtual and Robotic Agents: A P300 BCI Study in Healthy and People Living With Spinal Cord Injury. Tidoni E; Abu-Alqumsan M; Leonardis D; Kapeller C; Fusco G; Guger C; Hintermuller C; Peer A; Frisoli A; Tecchia F; Bergamasco M; Aglioti SM IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1622-1632. PubMed ID: 28026777 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]