These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 30687343)

  • 1. ADAM-Plant: A Software for Stochastic Simulations of Plant Breeding From Molecular to Phenotypic Level and From Simple Selection to Complex Speed Breeding Programs.
    Liu H; Tessema BB; Jensen J; Cericola F; Andersen JR; Sørensen AC
    Front Plant Sci; 2018; 9():1926. PubMed ID: 30687343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Different Strategies for Exploiting Genomic Selection in Perennial Ryegrass Breeding Programs.
    Esfandyari H; Fè D; Tessema BB; Janss LL; Jensen J
    G3 (Bethesda); 2020 Oct; 10(10):3783-3795. PubMed ID: 32819970
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimizing self-pollinated crop breeding employing genomic selection: From schemes to updating training sets.
    Sabadin F; DoVale JC; Platten JD; Fritsche-Neto R
    Front Plant Sci; 2022; 13():935885. PubMed ID: 36275547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Boosting Genetic Gain in Allogamous Crops
    Jighly A; Lin Z; Pembleton LW; Cogan NOI; Spangenberg GC; Hayes BJ; Daetwyler HD
    Front Plant Sci; 2019; 10():1364. PubMed ID: 31803197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strategies Using Genomic Selection to Increase Genetic Gain in Breeding Programs for Wheat.
    Tessema BB; Liu H; Sørensen AC; Andersen JR; Jensen J
    Front Genet; 2020; 11():578123. PubMed ID: 33343626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. QuLinePlus: extending plant breeding strategy and genetic model simulation to cross-pollinated populations-case studies in forage breeding.
    Hoyos-Villegas V; Arief VN; Yang WH; Sun M; DeLacy IH; Barrett BA; Jahufer Z; Basford KE
    Heredity (Edinb); 2019 May; 122(5):684-695. PubMed ID: 30368530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AlphaSim: Software for Breeding Program Simulation.
    Faux AM; Gorjanc G; Gaynor RC; Battagin M; Edwards SM; Wilson DL; Hearne SJ; Gonen S; Hickey JM
    Plant Genome; 2016 Nov; 9(3):. PubMed ID: 27902803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomic selection in wheat: optimum allocation of test resources and comparison of breeding strategies for line and hybrid breeding.
    Longin CF; Mi X; Würschum T
    Theor Appl Genet; 2015 Jul; 128(7):1297-306. PubMed ID: 25877519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimizing Genomic Selection for a Sorghum Breeding Program in Haiti: A Simulation Study.
    Muleta KT; Pressoir G; Morris GP
    G3 (Bethesda); 2019 Feb; 9(2):391-401. PubMed ID: 30530641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genomic Breeding Programs Realize Larger Benefits by Cooperation in the Presence of Genotype × Environment Interaction Than Conventional Breeding Programs.
    Cao L; Liu H; Mulder HA; Henryon M; Thomasen JR; Kargo M; Sørensen AC
    Front Genet; 2020; 11():251. PubMed ID: 32373152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gains through selection for grain yield in a winter wheat breeding program.
    Lozada DN; Ward BP; Carter AH
    PLoS One; 2020; 15(4):e0221603. PubMed ID: 32343696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation-based optimization of genomic selection scheme for accelerating genetic gain while preventing inbreeding depression in onion breeding.
    Sekine D; Yabe S
    Breed Sci; 2020 Dec; 70(5):594-604. PubMed ID: 33603556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genomic selection strategies to increase genetic gain in tea breeding programs.
    Lubanga N; Massawe F; Mayes S; Gorjanc G; Bančič J
    Plant Genome; 2023 Mar; 16(1):e20282. PubMed ID: 36349831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accelerating Tomato Breeding by Exploiting Genomic Selection Approaches.
    Cappetta E; Andolfo G; Di Matteo A; Barone A; Frusciante L; Ercolano MR
    Plants (Basel); 2020 Sep; 9(9):. PubMed ID: 32962095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Economic evaluation of genomic selection in small ruminants: a sheep meat breeding program.
    Shumbusho F; Raoul J; Astruc JM; Palhiere I; Lemarié S; Fugeray-Scarbel A; Elsen JM
    Animal; 2016 Jun; 10(6):1033-41. PubMed ID: 26446712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expected benefit of genomic selection over forward selection in conifer breeding and deployment.
    Li Y; Dungey HS
    PLoS One; 2018; 13(12):e0208232. PubMed ID: 30532178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. pSBVB: A Versatile Simulation Tool To Evaluate Genomic Selection in Polyploid Species.
    Zingaretti ML; Monfort A; Pérez-Enciso M
    G3 (Bethesda); 2019 Feb; 9(2):327-334. PubMed ID: 30573468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic Gain and Inbreeding from Genomic Selection in a Simulated Commercial Breeding Program for Perennial Ryegrass.
    Lin Z; Cogan NO; Pembleton LW; Spangenberg GC; Forster JW; Hayes BJ; Daetwyler HD
    Plant Genome; 2016 Mar; 9(1):. PubMed ID: 27898764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genomic selection strategies for clonally propagated crops.
    Werner CR; Gaynor RC; Sargent DJ; Lillo A; Gorjanc G; Hickey JM
    Theor Appl Genet; 2023 Mar; 136(4):74. PubMed ID: 36952013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-term selection strategies for complex traits using high-density genetic markers.
    Kemper KE; Bowman PJ; Pryce JE; Hayes BJ; Goddard ME
    J Dairy Sci; 2012 Aug; 95(8):4646-56. PubMed ID: 22818479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.