These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

446 related articles for article (PubMed ID: 30687381)

  • 21. [Application of CRISPR-Cas9 genome editing for constructing animal models of human diseases].
    Ou Z; Sun X
    Zhonghua Yi Xue Yi Chuan Xue Za Zhi; 2016 Aug; 33(4):559-63. PubMed ID: 27455021
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Endogenous sequence patterns predispose the repair modes of CRISPR/Cas9-induced DNA double-stranded breaks in Arabidopsis thaliana.
    Vu GTH; Cao HX; Fauser F; Reiss B; Puchta H; Schubert I
    Plant J; 2017 Oct; 92(1):57-67. PubMed ID: 28696528
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Systematic quantification of HDR and NHEJ reveals effects of locus, nuclease, and cell type on genome-editing.
    Miyaoka Y; Berman JR; Cooper SB; Mayerl SJ; Chan AH; Zhang B; Karlin-Neumann GA; Conklin BR
    Sci Rep; 2016 Mar; 6():23549. PubMed ID: 27030102
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Programmable DNA repair with CRISPRa/i enhanced homology-directed repair efficiency with a single Cas9.
    Ye L; Wang C; Hong L; Sun N; Chen D; Chen S; Han F
    Cell Discov; 2018; 4():46. PubMed ID: 30062046
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Designed nucleases for targeted genome editing.
    Lee J; Chung JH; Kim HM; Kim DW; Kim H
    Plant Biotechnol J; 2016 Feb; 14(2):448-62. PubMed ID: 26369767
    [TBL] [Abstract][Full Text] [Related]  

  • 26.
    Savić N; Ringnalda FC; Berk C; Bargsten K; Hall J; Jinek M; Schwank G
    Bio Protoc; 2019 Jan; 9(1):. PubMed ID: 30675496
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Precise exogenous insertion and sequence replacements in poplar by simultaneous HDR overexpression and NHEJ suppression using CRISPR-Cas9.
    Movahedi A; Wei H; Zhou X; Fountain JC; Chen ZH; Mu Z; Sun W; Zhang J; Li D; Guo B; Varshney RK; Yang L; Zhuge Q
    Hortic Res; 2022; 9():uhac154. PubMed ID: 36133672
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optimizing the DNA Donor Template for Homology-Directed Repair of Double-Strand Breaks.
    Song F; Stieger K
    Mol Ther Nucleic Acids; 2017 Jun; 7():53-60. PubMed ID: 28624224
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Methods for Enhancing Clustered Regularly Interspaced Short Palindromic Repeats/Cas9-Mediated Homology-Directed Repair Efficiency.
    Tang XD; Gao F; Liu MJ; Fan QL; Chen DK; Ma WT
    Front Genet; 2019; 10():551. PubMed ID: 31263478
    [TBL] [Abstract][Full Text] [Related]  

  • 30. RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency.
    Song J; Yang D; Xu J; Zhu T; Chen YE; Zhang J
    Nat Commun; 2016 Jan; 7():10548. PubMed ID: 26817820
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CRISPR/Cas9-Induced Double-Strand Break Repair in Arabidopsis Nonhomologous End-Joining Mutants.
    Shen H; Strunks GD; Klemann BJ; Hooykaas PJ; de Pater S
    G3 (Bethesda); 2017 Jan; 7(1):193-202. PubMed ID: 27866150
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of RS-1 derivatives in homology-directed repair at the human genome ATG5 locus.
    Jeon IS; Shin JC; Kim SR; Park KS; Yoo HJ; Lee KY; Lee HK; Choi JK
    Arch Pharm Res; 2020 Jun; 43(6):639-645. PubMed ID: 32500310
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Suppression of
    Zhao Z; Zhang H; Xiong T; Wang J; Yang D; Zhu D; Li J; Yang Y; Sun C; Zhao Y; Xi JJ
    Int J Mol Sci; 2020 Aug; 21(16):. PubMed ID: 32823670
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ectopic expression of RAD52 and dn53BP1 improves homology-directed repair during CRISPR-Cas9 genome editing.
    Paulsen BS; Mandal PK; Frock RL; Boyraz B; Yadav R; Upadhyayula S; Gutierrez-Martinez P; Ebina W; Fasth A; Kirchhausen T; Talkowski ME; Agarwal S; Alt FW; Rossi DJ
    Nat Biomed Eng; 2017 Nov; 1(11):878-888. PubMed ID: 31015609
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Small molecules enhance CRISPR/Cas9-mediated homology-directed genome editing in primary cells.
    Li G; Zhang X; Zhong C; Mo J; Quan R; Yang J; Liu D; Li Z; Yang H; Wu Z
    Sci Rep; 2017 Aug; 7(1):8943. PubMed ID: 28827551
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CRISPR/Cas9-mediated correction of human genetic disease.
    Men K; Duan X; He Z; Yang Y; Yao S; Wei Y
    Sci China Life Sci; 2017 May; 60(5):447-457. PubMed ID: 28534256
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Plant genome editing with TALEN and CRISPR.
    Malzahn A; Lowder L; Qi Y
    Cell Biosci; 2017; 7():21. PubMed ID: 28451378
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Zinc finger nuclease-mediated targeting of multiple transgenes to an endogenous soybean genomic locus via non-homologous end joining.
    Bonawitz ND; Ainley WM; Itaya A; Chennareddy SR; Cicak T; Effinger K; Jiang K; Mall TK; Marri PR; Samuel JP; Sardesai N; Simpson M; Folkerts O; Sarria R; Webb SR; Gonzalez DO; Simmonds DH; Pareddy DR
    Plant Biotechnol J; 2019 Apr; 17(4):750-761. PubMed ID: 30220095
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A history of genome editing in mammals.
    Fernández A; Josa S; Montoliu L
    Mamm Genome; 2017 Aug; 28(7-8):237-246. PubMed ID: 28589393
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gene editing using ssODNs with engineered endonucleases.
    Chen F; Pruett-Miller SM; Davis GD
    Methods Mol Biol; 2015; 1239():251-65. PubMed ID: 25408411
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.