These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 30687716)
1. The Energy Landscape of Human Serine Racemase. Raboni S; Marchetti M; Faggiano S; Campanini B; Bruno S; Marchesani F; Margiotta M; Mozzarelli A Front Mol Biosci; 2018; 5():112. PubMed ID: 30687716 [TBL] [Abstract][Full Text] [Related]
2. ATP binding to human serine racemase is cooperative and modulated by glycine. Marchetti M; Bruno S; Campanini B; Peracchi A; Mai N; Mozzarelli A FEBS J; 2013 Nov; 280(22):5853-63. PubMed ID: 23992455 [TBL] [Abstract][Full Text] [Related]
3. Serine racemase: a key player in neuron activity and in neuropathologies. Campanini B; Spyrakis F; Peracchi A; Mozzarelli A Front Biosci (Landmark Ed); 2013 Jun; 18(3):1112-28. PubMed ID: 23747871 [TBL] [Abstract][Full Text] [Related]
4. Human Serine Racemase Weakly Binds the Third PDZ Domain of PSD-95. Giaccari R; Marchesani F; Compari C; Fisicaro E; Mozzarelli A; Campanini B; Bettati S; Bruno S; Faggiano S Int J Mol Sci; 2022 Apr; 23(9):. PubMed ID: 35563349 [TBL] [Abstract][Full Text] [Related]
5. Human Serine Racemase: Key Residues/Active Site Motifs and Their Relation to Enzyme Function. Graham DL; Beio ML; Nelson DL; Berkowitz DB Front Mol Biosci; 2019; 6():8. PubMed ID: 30918891 [TBL] [Abstract][Full Text] [Related]
6. Human serine racemase is allosterically modulated by NADH and reduced nicotinamide derivatives. Bruno S; Marchesani F; Dellafiora L; Margiotta M; Faggiano S; Campanini B; Mozzarelli A Biochem J; 2016 Oct; 473(20):3505-3516. PubMed ID: 27493223 [TBL] [Abstract][Full Text] [Related]
7. Mechanism of eukaryotic serine racemase-catalyzed serine dehydration. Ito T; Matsuoka M; Goto M; Watanabe S; Mizobuchi T; Matsushita K; Nasu R; Hemmi H; Yoshimura T Biochim Biophys Acta Proteins Proteom; 2020 Sep; 1868(9):140460. PubMed ID: 32474107 [TBL] [Abstract][Full Text] [Related]
8. D-amino acids in the brain: the biochemistry of brain serine racemase. Baumgart F; Rodríguez-Crespo I FEBS J; 2008 Jul; 275(14):3538-45. PubMed ID: 18564178 [TBL] [Abstract][Full Text] [Related]
9. Crystal structure of a pyridoxal 5'-phosphate-dependent aspartate racemase derived from the bivalve mollusc Scapharca broughtonii. Mizobuchi T; Nonaka R; Yoshimura M; Abe K; Takahashi S; Kera Y; Goto M Acta Crystallogr F Struct Biol Commun; 2017 Dec; 73(Pt 12):651-656. PubMed ID: 29199985 [TBL] [Abstract][Full Text] [Related]
11. Human serine racemase is nitrosylated at multiple sites. Marchesani F; Bruno S; Paredi G; Raboni S; Campanini B; Mozzarelli A Biochim Biophys Acta Proteins Proteom; 2018 Jul; 1866(7):813-821. PubMed ID: 29410194 [TBL] [Abstract][Full Text] [Related]
12. Catalytic mechanism of serine racemase from Dictyostelium discoideum. Ito T; Maekawa M; Hayashi S; Goto M; Hemmi H; Yoshimura T Amino Acids; 2013 Mar; 44(3):1073-84. PubMed ID: 23269477 [TBL] [Abstract][Full Text] [Related]
13. The allosteric interplay between S-nitrosylation and glycine binding controls the activity of human serine racemase. Marchesani F; Gianquinto E; Autiero I; Michielon A; Campanini B; Faggiano S; Bettati S; Mozzarelli A; Spyrakis F; Bruno S FEBS J; 2021 May; 288(9):3034-3054. PubMed ID: 33249721 [TBL] [Abstract][Full Text] [Related]
14. Metal ion dependency of serine racemase from Dictyostelium discoideum. Ito T; Murase H; Maekawa M; Goto M; Hayashi S; Saito H; Maki M; Hemmi H; Yoshimura T Amino Acids; 2012 Oct; 43(4):1567-76. PubMed ID: 22311068 [TBL] [Abstract][Full Text] [Related]
15. A new strategy to decrease N-methyl-D-aspartate (NMDA) receptor coactivation: inhibition of D-serine synthesis by converting serine racemase into an eliminase. Panizzutti R; De Miranda J; Ribeiro CS; Engelender S; Wolosker H Proc Natl Acad Sci U S A; 2001 Apr; 98(9):5294-9. PubMed ID: 11309496 [TBL] [Abstract][Full Text] [Related]
16. Cloning and expression of the pyridoxal 5'-phosphate-dependent aspartate racemase gene from the bivalve mollusk Scapharca broughtonii and characterization of the recombinant enzyme. Abe K; Takahashi S; Muroki Y; Kera Y; Yamada RH J Biochem; 2006 Feb; 139(2):235-44. PubMed ID: 16452311 [TBL] [Abstract][Full Text] [Related]
17. Conformational flexibility within the small domain of human serine racemase. Koulouris CR; Bax BD; Atack JR; Roe SM Acta Crystallogr F Struct Biol Commun; 2020 Feb; 76(Pt 2):65-73. PubMed ID: 32039887 [TBL] [Abstract][Full Text] [Related]
18. The structure of mammalian serine racemase: evidence for conformational changes upon inhibitor binding. Smith MA; Mack V; Ebneth A; Moraes I; Felicetti B; Wood M; Schonfeld D; Mather O; Cesura A; Barker J J Biol Chem; 2010 Apr; 285(17):12873-81. PubMed ID: 20106978 [TBL] [Abstract][Full Text] [Related]
19. D-amino acids in the brain: structure and function of pyridoxal phosphate-dependent amino acid racemases. Yoshimura T; Goto M FEBS J; 2008 Jul; 275(14):3527-37. PubMed ID: 18564179 [TBL] [Abstract][Full Text] [Related]
20. Regulation of human serine racemase activity and dynamics by halides, ATP and malonate. Marchetti M; Bruno S; Campanini B; Bettati S; Peracchi A; Mozzarelli A Amino Acids; 2015 Jan; 47(1):163-73. PubMed ID: 25331425 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]