These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 30688065)

  • 81. Glycerine-based synthesis of a highly efficient Fe
    Wang M; Li F; Liu J
    RSC Adv; 2020 Aug; 10(49):29575-29579. PubMed ID: 35521143
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Electrocatalytic N
    Zhang R; Ji L; Kong W; Wang H; Zhao R; Chen H; Li T; Li B; Luo Y; Sun X
    Chem Commun (Camb); 2019 May; 55(36):5263-5266. PubMed ID: 30993285
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential.
    Wang J; Yu L; Hu L; Chen G; Xin H; Feng X
    Nat Commun; 2018 May; 9(1):1795. PubMed ID: 29765053
    [TBL] [Abstract][Full Text] [Related]  

  • 84. A General Strategy to Glassy M-Te (M = Ru, Rh, Ir) Porous Nanorods for Efficient Electrochemical N
    Wang J; Huang B; Ji Y; Sun M; Wu T; Yin R; Zhu X; Li Y; Shao Q; Huang X
    Adv Mater; 2020 Mar; 32(11):e1907112. PubMed ID: 32020715
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Greatly Improving Electrochemical N
    Wu T; Zhu X; Xing Z; Mou S; Li C; Qiao Y; Liu Q; Luo Y; Shi X; Zhang Y; Sun X
    Angew Chem Int Ed Engl; 2019 Dec; 58(51):18449-18453. PubMed ID: 31549471
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Electrochemical nitrogen reduction to ammonia at ambient conditions on nitrogen and phosphorus co-doped porous carbon.
    Song P; Wang H; Kang L; Ran B; Song H; Wang R
    Chem Commun (Camb); 2019 Jan; 55(5):687-690. PubMed ID: 30565601
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Defect-Induced Ce-Doped Bi
    Yang X; Ma Y; Liu Y; Wang K; Wang Y; Liu M; Qiu X; Li W; Li J
    ACS Appl Mater Interfaces; 2021 May; 13(17):19864-19872. PubMed ID: 33878865
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Interfacial engineering of cobalt sulfide/graphene hybrids for highly efficient ammonia electrosynthesis.
    Chen P; Zhang N; Wang S; Zhou T; Tong Y; Ao C; Yan W; Zhang L; Chu W; Wu C; Xie Y
    Proc Natl Acad Sci U S A; 2019 Apr; 116(14):6635-6640. PubMed ID: 30872473
    [TBL] [Abstract][Full Text] [Related]  

  • 89. An oxygen-coordinated molybdenum single atom catalyst for efficient electrosynthesis of ammonia.
    Geng J; Zhang S; Xu H; Wang G; Zhang H
    Chem Commun (Camb); 2021 Jun; 57(44):5410-5413. PubMed ID: 33949474
    [TBL] [Abstract][Full Text] [Related]  

  • 90. A Janus Fe-SnO
    Zhang L; Cong M; Ding X; Jin Y; Xu F; Wang Y; Chen L; Zhang L
    Angew Chem Int Ed Engl; 2020 Jun; 59(27):10888-10893. PubMed ID: 32243679
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Dual Interface-Engineered Tin Heterostructure for Enhanced Ambient Ammonia Electrosynthesis.
    Li Q; Zhang Y; Wang X; Yang Y
    ACS Appl Mater Interfaces; 2021 Apr; 13(13):15270-15278. PubMed ID: 33769776
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Three-Phase Electrolysis by Gold Nanoparticle on Hydrophobic Interface for Enhanced Electrochemical Nitrogen Reduction Reaction.
    Zhang J; Zhao B; Liang W; Zhou G; Liang Z; Wang Y; Qu J; Sun Y; Jiang L
    Adv Sci (Weinh); 2020 Nov; 7(22):2002630. PubMed ID: 33240780
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Single molybdenum center supported on N-doped black phosphorus as an efficient electrocatalyst for nitrogen fixation.
    Ou P; Zhou X; Meng F; Chen C; Chen Y; Song J
    Nanoscale; 2019 Jul; 11(28):13600-13611. PubMed ID: 31290905
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Boosting electrochemical nitrogen reduction to ammonia with high efficiency using a LiNb
    Wang Q; Fan S; Liu L; Wen X; Wu Y; Yao R; Zhao Q; Li J; Liu G
    Dalton Trans; 2022 Jan; 51(3):1131-1136. PubMed ID: 34939636
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Efficient Electrochemical Nitrogen Fixation over Isolated Pt Sites.
    Hao R; Sun W; Liu Q; Liu X; Chen J; Lv X; Li W; Liu YP; Shen Z
    Small; 2020 Jun; 16(22):e2000015. PubMed ID: 32338456
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Manipulating wettability of catalytic surface for improving ammonia production from electrochemical nitrogen reduction.
    Kim D; Alam K; Han MK; Surendran S; Lim J; Young Kim J; Jun Moon D; Jeong G; Gon Kim M; Kwon G; Yang S; Gon Kang T; Kyu Kim J; Yeop Jung S; Cho H; Sim U
    J Colloid Interface Sci; 2023 Mar; 633():53-59. PubMed ID: 36434935
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Synergistic bimetallic CoFe
    Ahmed MI; Chen S; Ren W; Chen X; Zhao C
    Chem Commun (Camb); 2019 Oct; 55(81):12184-12187. PubMed ID: 31544195
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Electrocatalytic Synthesis of Ammonia Using a 2D Ti
    Liu A; Liang X; Yang Q; Ren X; Gao M; Yang Y; Ma T
    Chempluschem; 2021 Jan; 86(1):166-170. PubMed ID: 33215874
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Amorphous Chromium Oxide with Hollow Morphology for Nitrogen Electrochemical Reduction under Ambient Conditions.
    Pan T; Wang L; Shen Y; Zhang X; Luo C; Li H; Wu P; Zhang H; Zhang W; Savilov SV; Huo F
    ACS Appl Mater Interfaces; 2022 Mar; 14(12):14474-14481. PubMed ID: 35290027
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Electrocatalytic N
    Gao L; Guo C; Zhao M; Yang H; Ma X; Liu C; Liu X; Sun X; Wei Q
    ACS Appl Mater Interfaces; 2021 Oct; 13(42):50027-50036. PubMed ID: 34636553
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.