BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 30688066)

  • 1. Online Analysis of Drug Toxicity to Cells with Shear Stress on an Integrated Microfluidic Chip.
    Feng S; Mao S; Zhang Q; Li W; Lin JM
    ACS Sens; 2019 Feb; 4(2):521-527. PubMed ID: 30688066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A systematic investigation of the effect of the fluid shear stress on Caco-2 cells towards the optimization of epithelial organ-on-chip models.
    Delon LC; Guo Z; Oszmiana A; Chien CC; Gibson R; Prestidge C; Thierry B
    Biomaterials; 2019 Dec; 225():119521. PubMed ID: 31600674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrated microfluidic chip for endothelial cells culture and analysis exposed to a pulsatile and oscillatory shear stress.
    Shao J; Wu L; Wu J; Zheng Y; Zhao H; Jin Q; Zhao J
    Lab Chip; 2009 Nov; 9(21):3118-25. PubMed ID: 19823728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluid shear stress in a logarithmic microfluidic device enhances cancer cell stemness marker expression.
    Dash SK; Patra B; Sharma V; Das SK; Verma RS
    Lab Chip; 2022 May; 22(11):2200-2211. PubMed ID: 35544034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long range microfluidic shear device for cellular mechanotransduction studies.
    Dash SK; Verma RS; Das SK
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3209-12. PubMed ID: 26736975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A cell-based sensor of fluid shear stress for microfluidics.
    Varma S; Voldman J
    Lab Chip; 2015 Mar; 15(6):1563-73. PubMed ID: 25648195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterisation of human induced pluripotent stem cell-derived endothelial cells under shear stress using an easy-to-use microfluidic cell culture system.
    Ohtani-Kaneko R; Sato K; Tsutiya A; Nakagawa Y; Hashizume K; Tazawa H
    Biomed Microdevices; 2017 Oct; 19(4):91. PubMed ID: 28994005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of Microfluidic Dilution Network-Based System for Lab-on-a-Chip Microalgal Bioassays.
    Zheng G; Lu L; Yang Y; Wei J; Han B; Zhang Q; Wang Y
    Anal Chem; 2018 Nov; 90(22):13280-13289. PubMed ID: 30345743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A microfluidic flow-stretch chip for investigating blood vessel biomechanics.
    Zheng W; Jiang B; Wang D; Zhang W; Wang Z; Jiang X
    Lab Chip; 2012 Sep; 12(18):3441-50. PubMed ID: 22820518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A microfluidic generator of dynamic shear stress and biochemical signals based on autonomously oscillatory flow.
    Li YJ; Zhang WJ; Zhan CL; Chen KJ; Xue CD; Wang Y; Chen XM; Qin KR
    Electrophoresis; 2021 Nov; 42(21-22):2264-2272. PubMed ID: 34278592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic perfusion culture chip providing different strengths of shear stress for analysis of vascular endothelial function.
    Hattori K; Munehira Y; Kobayashi H; Satoh T; Sugiura S; Kanamori T
    J Biosci Bioeng; 2014 Sep; 118(3):327-32. PubMed ID: 24630614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flow stimulates drug transport in a human kidney proximal tubule-on-a-chip independent of primary cilia.
    Vriend J; Peters JGP; Nieskens TTG; Škovroňová R; Blaimschein N; Schmidts M; Roepman R; Schirris TJJ; Russel FGM; Masereeuw R; Wilmer MJ
    Biochim Biophys Acta Gen Subj; 2020 Jan; 1864(1):129433. PubMed ID: 31520681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The decrease in histone methyltransferase EZH2 in response to fluid shear stress alters endothelial gene expression and promotes quiescence.
    Maleszewska M; Vanchin B; Harmsen MC; Krenning G
    Angiogenesis; 2016 Jan; 19(1):9-24. PubMed ID: 26416763
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiwell capillarity-based microfluidic device for the study of 3D tumour tissue-2D endothelium interactions and drug screening in co-culture models.
    Virumbrales-Muñoz M; Ayuso JM; Olave M; Monge R; de Miguel D; Martínez-Lostao L; Le Gac S; Doblare M; Ochoa I; Fernandez LJ
    Sci Rep; 2017 Sep; 7(1):11998. PubMed ID: 28931839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An open-space microfluidic chip with fluid walls for online detection of VEGF
    Feng S; Mao S; Dou J; Li W; Li H; Lin JM
    Chem Sci; 2019 Oct; 10(37):8571-8576. PubMed ID: 31803431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomimetic microfluidic device for in vitro antihypertensive drug evaluation.
    Li L; Lv X; Ostrovidov S; Shi X; Zhang N; Liu J
    Mol Pharm; 2014 Jul; 11(7):2009-15. PubMed ID: 24673554
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hele Shaw microfluidic device: A new tool for systematic investigation into the effect of the fluid shear stress for organs-on-chips.
    Delon LC; Guo Z; Kashani MN; Yang CT; Prestidge C; Thierry B
    MethodsX; 2020; 7():100980. PubMed ID: 32685381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three dimensional modeling of biologically relevant fluid shear stress in human renal tubule cells mimics in vivo transcriptional profiles.
    Ross EJ; Gordon ER; Sothers H; Darji R; Baron O; Haithcock D; Prabhakarpandian B; Pant K; Myers RM; Cooper SJ; Cox NJ
    Sci Rep; 2021 Jul; 11(1):14053. PubMed ID: 34234242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Responses of Cellular Adhesion Strength and Stiffness to Fluid Shear Stress during Tumor Cell Rolling Motion.
    Li W; Mao S; Khan M; Zhang Q; Huang Q; Feng S; Lin JM
    ACS Sens; 2019 Jun; 4(6):1710-1715. PubMed ID: 31094503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A pneumatic pressure-driven multi-throughput microfluidic circulation culture system.
    Satoh T; Narazaki G; Sugita R; Kobayashi H; Sugiura S; Kanamori T
    Lab Chip; 2016 Jun; 16(12):2339-48. PubMed ID: 27229626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.