These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
577 related articles for article (PubMed ID: 30688155)
21. Novel Light-Responsive Hydrogels with Antimicrobial and Antifouling Capabilities. Liu Q; Liu L Langmuir; 2019 Feb; 35(5):1450-1457. PubMed ID: 30056704 [TBL] [Abstract][Full Text] [Related]
22. Biomimetic anchors applied to the host-guest antifouling functionalization of titanium substrates. Cai XY; Li NN; Chen JC; Kang ET; Xu LQ J Colloid Interface Sci; 2016 Aug; 475():8-16. PubMed ID: 27135943 [TBL] [Abstract][Full Text] [Related]
23. Zwitterionic sulfobetaine polymer-immobilized surface by simple tyrosinase-mediated grafting for enhanced antifouling property. Kwon HJ; Lee Y; Phuong LT; Seon GM; Kim E; Park JC; Yoon H; Park KD Acta Biomater; 2017 Oct; 61():169-179. PubMed ID: 28782724 [TBL] [Abstract][Full Text] [Related]
24. Molecular fouling resistance of zwitterionic and amphiphilic initiated chemically vapor-deposited (iCVD) thin films. Yang R; Goktekin E; Wang M; Gleason KK J Biomater Sci Polym Ed; 2014; 25(14-15):1687-702. PubMed ID: 25188220 [TBL] [Abstract][Full Text] [Related]
25. Bioinspired and biocompatible carbon nanotube-Ag nanohybrid coatings for robust antibacterial applications. Nie C; Yang Y; Cheng C; Ma L; Deng J; Wang L; Zhao C Acta Biomater; 2017 Mar; 51():479-494. PubMed ID: 28082114 [TBL] [Abstract][Full Text] [Related]
26. Development of anti-biofouling interface on hydroxyapatite surface by coating zwitterionic MPC polymer containing calcium-binding moieties to prevent oral bacterial adhesion. Kang S; Lee M; Kang M; Noh M; Jeon J; Lee Y; Seo JH Acta Biomater; 2016 Aug; 40():70-77. PubMed ID: 26961806 [TBL] [Abstract][Full Text] [Related]
27. Surface charge control for zwitterionic polymer brushes: Tailoring surface properties to antifouling applications. Guo S; Jańczewski D; Zhu X; Quintana R; He T; Neoh KG J Colloid Interface Sci; 2015 Aug; 452():43-53. PubMed ID: 25913777 [TBL] [Abstract][Full Text] [Related]
28. Grafting zwitterionic brushes from the surface of an epoxy-based transparent hydrogel for antifouling performance. Han J; Zhang K; Cai Q; Dong P; Quan D; Bai Y Biomed Mater; 2023 Aug; 18(5):. PubMed ID: 37467763 [TBL] [Abstract][Full Text] [Related]
29. Hemocompatibility and anti-biofouling property improvement of poly(ethylene terephthalate) via self-polymerization of dopamine and covalent graft of lysine. Zhi X; Li P; Gan X; Zhang W; Shen T; Yuan J; Shen J J Biomater Sci Polym Ed; 2014; 25(14-15):1619-28. PubMed ID: 25075613 [TBL] [Abstract][Full Text] [Related]
30. Conformal Hydrogel Coatings on Catheters To Reduce Biofouling. Yong Y; Qiao M; Chiu A; Fuchs S; Liu Q; Pardo Y; Worobo R; Liu Z; Ma M Langmuir; 2019 Feb; 35(5):1927-1934. PubMed ID: 30441901 [TBL] [Abstract][Full Text] [Related]
31. Functionalizable and ultra-low fouling zwitterionic surfaces via adhesive mussel mimetic linkages. Gao C; Li G; Xue H; Yang W; Zhang F; Jiang S Biomaterials; 2010 Mar; 31(7):1486-92. PubMed ID: 19962753 [TBL] [Abstract][Full Text] [Related]
32. Anti-biofouling Sulfobetaine Polymer Thin Films on Silicon and Silicon Nanopore Membranes. Li L; Marchant RE; Dubnisheva A; Roy S; Fissell WH J Biomater Sci Polym Ed; 2011; 22(1-3):91-106. PubMed ID: 20546677 [TBL] [Abstract][Full Text] [Related]
33. Surface Design of Antifouling Vascular Constructs Bearing Biofunctional Peptides for Tissue Regeneration Applications. Sivkova R; Táborská J; Reparaz A; de Los Santos Pereira A; Kotelnikov I; Proks V; Kučka J; Svoboda J; Riedel T; Pop-Georgievski O Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32947982 [TBL] [Abstract][Full Text] [Related]
34. Bioinert Control of Zwitterionic Poly(ethylene terephtalate) Fibrous Membranes. Tang SH; Domino MY; Venault A; Lin HT; Hsieh C; Higuchi A; Chinnathambi A; Alharbi SA; Tayo LL; Chang Y Langmuir; 2019 Feb; 35(5):1727-1739. PubMed ID: 29925240 [TBL] [Abstract][Full Text] [Related]
35. Biomimetic anchors for antifouling and antibacterial polymer brushes on stainless steel. Yang WJ; Cai T; Neoh KG; Kang ET; Dickinson GH; Teo SL; Rittschof D Langmuir; 2011 Jun; 27(11):7065-76. PubMed ID: 21563843 [TBL] [Abstract][Full Text] [Related]
36. Mussel-Inspired Surface Functionalization of PET with Zwitterions and Silver Nanoparticles for the Dual-Enhanced Antifouling and Antibacterial Properties. Xin X; Li P; Zhu Y; Shi L; Yuan J; Shen J Langmuir; 2019 Feb; 35(5):1788-1797. PubMed ID: 30089363 [TBL] [Abstract][Full Text] [Related]
37. Grafting Robust Thick Zwitterionic Polymer Brushes via Subsurface-Initiated Ring-Opening Metathesis Polymerization for Antimicrobial and Anti-Biofouling. Ye Q; He B; Zhang Y; Zhang J; Liu S; Zhou F ACS Appl Mater Interfaces; 2019 Oct; 11(42):39171-39178. PubMed ID: 31559815 [TBL] [Abstract][Full Text] [Related]
38. A nitric oxide-catalytically generating carboxymethyl chitosan/sodium alginate hydrogel coating mimicking endothelium function for improving the biocompatibility. Zhang Q; Liu X; Ma W; Jia K; Yang M; Meng L; Wang L; Ji Y; Chen J; Lin J; Pan C Int J Biol Macromol; 2023 Dec; 253(Pt 1):126727. PubMed ID: 37673159 [TBL] [Abstract][Full Text] [Related]
39. Cytocompatible chitosan based multi-network hydrogels with antimicrobial, cell anti-adhesive and mechanical properties. Zou W; Chen Y; Zhang X; Li J; Sun L; Gui Z; Du B; Chen S Carbohydr Polym; 2018 Dec; 202():246-257. PubMed ID: 30286998 [TBL] [Abstract][Full Text] [Related]