These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 30688299)

  • 1. Exploring the Effects of Spaceflight on Mouse Physiology using the Open Access NASA GeneLab Platform.
    Beheshti A; Shirazi-Fard Y; Choi S; Berrios D; Gebre SG; Galazka JM; Costes SV
    J Vis Exp; 2019 Jan; (143):. PubMed ID: 30688299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Global transcriptomic analysis suggests carbon dioxide as an environmental stressor in spaceflight: A systems biology GeneLab case study.
    Beheshti A; Cekanaviciute E; Smith DJ; Costes SV
    Sci Rep; 2018 Mar; 8(1):4191. PubMed ID: 29520055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NASA GeneLab Project: Bridging Space Radiation Omics with Ground Studies.
    Beheshti A; Miller J; Kidane Y; Berrios D; Gebre SG; Costes SV
    Radiat Res; 2018 Jun; 189(6):553-559. PubMed ID: 29652620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The past, present, and future of National Aeronautics and Space Administration spaceflight diet in support of microgravity rodent experiments.
    Sun GS; Tou JC; Yu D; Girten BE; Cohen J
    Nutrition; 2014 Feb; 30(2):125-30. PubMed ID: 24012282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NASA GeneLab: interfaces for the exploration of space omics data.
    Berrios DC; Galazka J; Grigorev K; Gebre S; Costes SV
    Nucleic Acids Res; 2021 Jan; 49(D1):D1515-D1522. PubMed ID: 33080015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of body fluid volume and electrolyte concentrations in spaceflight.
    Smith SM; Krauhs JM; Leach CS
    Adv Space Biol Med; 1997; 6():123-65. PubMed ID: 9048137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a step-down method for altering male C57BL/6 mouse housing density and hierarchical structure: Preparations for spaceflight studies.
    Scofield DC; Rytlewski JD; Childress P; Shah K; Tucker A; Khan F; Peveler J; Li D; McKinley TO; Chu TG; Hickman DL; Kacena MA
    Life Sci Space Res (Amst); 2018 May; 17():44-50. PubMed ID: 29753413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A microRNA signature and TGF-β1 response were identified as the key master regulators for spaceflight response.
    Beheshti A; Ray S; Fogle H; Berrios D; Costes SV
    PLoS One; 2018; 13(7):e0199621. PubMed ID: 30044882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of orbital spaceflight on bone histomorphometry and messenger ribonucleic acid levels for bone matrix proteins and skeletal signaling peptides in ovariectomized growing rats.
    Cavolina JM; Evans GL; Harris SA; Zhang M; Westerlind KC; Turner RT
    Endocrinology; 1997 Apr; 138(4):1567-76. PubMed ID: 9075717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GeneLab Database Analyses Suggest Long-Term Impact of Space Radiation on the Cardiovascular System by the Activation of
    Beheshti A; McDonald JT; Miller J; Grabham P; Costes SV
    Int J Mol Sci; 2019 Feb; 20(3):. PubMed ID: 30717456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Medical and surgical applications of space biosensor technology.
    Hines JW
    Acta Astronaut; 1996; 38(4-8):261-7. PubMed ID: 11541303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GeneLab: Omics database for spaceflight experiments.
    Ray S; Gebre S; Fogle H; Berrios DC; Tran PB; Galazka JM; Costes SV
    Bioinformatics; 2019 May; 35(10):1753-1759. PubMed ID: 30329036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NASA and Russian Space Agency sign agreement for additional Space Shuttle/Mir missions.
    Huff W
    Life Support Biosph Sci; 1994; 1(1):11-3. PubMed ID: 11538575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of NASA Foodbars as a standard diet for use in short-term rodent space flight studies.
    Tou J; Grindeland R; Barrett J; Dalton B; Mandel A; Wade C
    Nutrition; 2003; 19(11-12):947-54. PubMed ID: 14624944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent NASA research accomplishments aboard the ISS.
    Pellis NR; North RM
    Acta Astronaut; 2004; 55(3-9):589-98. PubMed ID: 15806746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Space Station Biological Research Project.
    Johnson CC; Wade CE; Givens JJ
    Gravit Space Biol Bull; 1997 Jun; 10(2):137-43. PubMed ID: 11540114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The space life sciences strategy for the 21st century.
    Nicogossian AE; Gaiser KK
    Acta Astronaut; 1992 Jun; 26(6):459-65. PubMed ID: 11537564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spaceflight-related suboptimal conditions can accentuate the altered gravity response of Drosophila transcriptome.
    Herranz R; Benguría A; Laván DA; López-Vidriero I; Gasset G; Javier Medina F; van Loon JJ; Marco R
    Mol Ecol; 2010 Oct; 19(19):4255-64. PubMed ID: 20819157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Animal housing influences the response of bone to spaceflight in juvenile rats.
    Morey-Holton ER; Halloran BP; Garetto LP; Doty SB
    J Appl Physiol (1985); 2000 Apr; 88(4):1303-9. PubMed ID: 10749823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of the nutrient-upgraded rodent food bar for rodent spaceflight experiments.
    Sun GS; Tou JC; Liittschwager K; Herrera AM; Hill EL; Girten B; Reiss-Bubenheim D; Vasques M
    Nutrition; 2010; 26(11-12):1163-9. PubMed ID: 20116210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.