BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 30688397)

  • 1. Solution Structure of Mannobioses Unravelled by Means of Raman Optical Activity.
    Pendrill R; Mutter ST; Mensch C; Barron LD; Blanch EW; Popelier PLA; Widmalm G; Johannessen C
    Chemphyschem; 2019 Mar; 20(5):695-705. PubMed ID: 30688397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Raman optical activity of a cyclic dipeptide analyzed by quantum chemical calculations combined with molecular dynamics simulations.
    Urago H; Suga T; Hirata T; Kodama H; Unno M
    J Phys Chem B; 2014 Jun; 118(24):6767-74. PubMed ID: 24873951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation of Raman optical activity of multi-component monosaccharide samples.
    Melcrová A; Kessler J; Bouř P; Kaminský J
    Phys Chem Chem Phys; 2016 Jan; 18(3):2130-42. PubMed ID: 26689801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformational dynamics of carbohydrates: Raman optical activity of D-glucuronic acid and N-acetyl-D-glucosamine using a combined molecular dynamics and quantum chemical approach.
    Mutter ST; Zielinski F; Cheeseman JR; Johannessen C; Popelier PL; Blanch EW
    Phys Chem Chem Phys; 2015 Feb; 17(8):6016-27. PubMed ID: 25639972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calculation of Raman optical activity spectra of methyl-β-D-glucose incorporating a full molecular dynamics simulation of hydration effects.
    Cheeseman JR; Shaik MS; Popelier PL; Blanch EW
    J Am Chem Soc; 2011 Apr; 133(13):4991-7. PubMed ID: 21401137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intensity-carrying modes in Raman and Raman optical activity spectroscopy.
    Luber S; Reiher M
    Chemphyschem; 2009 Aug; 10(12):2049-57. PubMed ID: 19582732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical study of the Raman optical activity spectra of 3(10)-helical polypeptides.
    Jacob CR
    Chemphyschem; 2011 Dec; 12(17):3291-306. PubMed ID: 22052852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation and structure of the potassium complex of valinomycin in solution studied by Raman optical activity spectroscopy.
    Yamamoto S; Straka M; Watarai H; Bour P
    Phys Chem Chem Phys; 2010 Sep; 12(36):11021-32. PubMed ID: 20668727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cocaine Hydrochloride Structure in Solution Revealed by Three Chiroptical Methods.
    Fagan P; Kocourková L; Tatarkovič M; Králík F; Kuchař M; Setnička V; Bouř P
    Chemphyschem; 2017 Aug; 18(16):2258-2265. PubMed ID: 28685956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational analysis of amphetamine and methamphetamine: a comprehensive approach by vibrational and chiroptical spectroscopy.
    Dobšíková K; Michal P; Spálovská D; Kuchař M; Paškanová N; Jurok R; Kapitán J; Setnička V
    Analyst; 2023 Mar; 148(6):1337-1348. PubMed ID: 36857656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vibrational optical activity of cysteine in aqueous solution: a comparison of theoretical and experimental spectra.
    Kamiński M; Kudelski A; Pecul M
    J Phys Chem B; 2012 Apr; 116(16):4976-90. PubMed ID: 22452552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anharmonic effects in IR, Raman, and Raman optical activity spectra of alanine and proline zwitterions.
    Danecek P; Kapitán J; Baumruk V; Bednárová L; Kopecký V; Bour P
    J Chem Phys; 2007 Jun; 126(22):224513. PubMed ID: 17581069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interpretation of Raman and Raman optical activity spectra of a flexible sugar derivative, the gluconic acid anion.
    Kaminský J; Kapitán J; Baumruk V; Bednárová L; Bour P
    J Phys Chem A; 2009 Apr; 113(15):3594-601. PubMed ID: 19309136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solvent Effects and Aggregation Phenomena Studied by Vibrational Optical Activity and Molecular Dynamics: The Case of Pantolactone.
    Ghidinelli S; Abbate S; Koshoubu J; Araki Y; Wada T; Longhi G
    J Phys Chem B; 2020 Jun; 124(22):4512-4526. PubMed ID: 32396357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Raman and ROA spectra of (-)- and (+)-2-Br-hexahelicene: experimental and DFT studies of a π-conjugated chiral system.
    Johannessen C; Blanch EW; Villani C; Abbate S; Longhi G; Agarwal NR; Tommasini M; Lightner DA
    J Phys Chem B; 2013 Feb; 117(7):2221-30. PubMed ID: 23343455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational Populations of β-(1→4) O-Glycosidic Linkages Using Redundant NMR J-Couplings and Circular Statistics.
    Zhang W; Turney T; Meredith R; Pan Q; Sernau L; Wang X; Hu X; Woods RJ; Carmichael I; Serianni AS
    J Phys Chem B; 2017 Apr; 121(14):3042-3058. PubMed ID: 28296420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Where does the Raman optical activity of [Rh(en)3](3+) come from? Insight from a combined experimental and theoretical approach.
    Humbert-Droz M; Oulevey P; Lawson Daku LM; Luber S; Hagemann H; Bürgi T
    Phys Chem Chem Phys; 2014 Nov; 16(42):23260-73. PubMed ID: 25259377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. pH-dependent chirality of L-proline studied by Raman optical activity and density functional theory calculation.
    Qiu S; Li G; Wang P; Zhou J; Feng Z; Li C
    J Phys Chem A; 2011 Mar; 115(8):1340-9. PubMed ID: 21309515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solvent effects on Raman optical activity spectra calculated using the polarizable continuum model.
    Pecul M; Lamparska E; Cappelli C; Frediani L; Ruud K
    J Phys Chem A; 2006 Mar; 110(8):2807-15. PubMed ID: 16494393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Raman optical activity of proteins, carbohydrates and glycoproteins.
    Zhu F; Isaacs NW; Hecht L; Tranter GE; Barron LD
    Chirality; 2006 Feb; 18(2):103-15. PubMed ID: 16385622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.