BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 30688405)

  • 1. A combined drug discovery strategy based on machine learning and molecular docking.
    Zhang Y; Wang Y; Zhou W; Fan Y; Zhao J; Zhu L; Lu S; Lu T; Chen Y; Liu H
    Chem Biol Drug Des; 2019 May; 93(5):685-699. PubMed ID: 30688405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of machine learning approaches for novel drug discovery.
    Lima AN; Philot EA; Trossini GH; Scott LP; Maltarollo VG; Honorio KM
    Expert Opin Drug Discov; 2016; 11(3):225-39. PubMed ID: 26814169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine Learning Models Combined with Virtual Screening and Molecular Docking to Predict Human Topoisomerase I Inhibitors.
    Li B; Kang X; Zhao D; Zou Y; Huang X; Wang J; Zhang C
    Molecules; 2019 Jun; 24(11):. PubMed ID: 31167344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. QSAR classification-based virtual screening followed by molecular docking studies for identification of potential inhibitors of 5-lipoxygenase.
    Shameera Ahamed TK; Rajan VK; Sabira K; Muraleedharan K
    Comput Biol Chem; 2018 Dec; 77():154-166. PubMed ID: 30321850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discovering the Active Ingredients of Medicine and Food Homologous Substances for Inhibiting the Cyclooxygenase-2 Metabolic Pathway by Machine Learning Algorithms.
    Tian Y; Zhang Z; Yan A
    Molecules; 2023 Sep; 28(19):. PubMed ID: 37836625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using machine learning to improve ensemble docking for drug discovery.
    Chandak T; Mayginnes JP; Mayes H; Wong CF
    Proteins; 2020 Oct; 88(10):1263-1270. PubMed ID: 32401384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Virtual Screening Strategy Combined Bayesian Classification Model, Molecular Docking for Acetyl-CoA Carboxylases Inhibitors.
    Zhou WN; Zhang YM; Qiao X; Pan J; Yin LF; Zhu L; Zhao JN; Lu S; Lu T; Chen YD; Liu HC
    Curr Comput Aided Drug Des; 2019; 15(3):193-205. PubMed ID: 30411690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine Learning Classification Models to Improve the Docking-based Screening: A Case of PI3K-Tankyrase Inhibitors.
    Berishvili VP; Voronkov AE; Radchenko EV; Palyulin VA
    Mol Inform; 2018 Nov; 37(11):e1800030. PubMed ID: 29901257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine Learning-based Virtual Screening for STAT3 Anticancer Drug Target.
    Wadood A; Ajmal A; Junaid M; Rehman AU; Uddin R; Azam SS; Khan AZ; Ali A
    Curr Pharm Des; 2022; 28(36):3023-3032. PubMed ID: 35909285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of machine learning models to predict inhibition of 3-dehydroquinate dehydratase.
    de Ávila MB; de Azevedo WF
    Chem Biol Drug Des; 2018 Aug; 92(2):1468-1474. PubMed ID: 29676519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ADMET Evaluation in Drug Discovery. 18. Reliable Prediction of Chemical-Induced Urinary Tract Toxicity by Boosting Machine Learning Approaches.
    Lei T; Sun H; Kang Y; Zhu F; Liu H; Zhou W; Wang Z; Li D; Li Y; Hou T
    Mol Pharm; 2017 Nov; 14(11):3935-3953. PubMed ID: 29037046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioactive Molecule Prediction Using Extreme Gradient Boosting.
    Babajide Mustapha I; Saeed F
    Molecules; 2016 Jul; 21(8):. PubMed ID: 27483216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A multi-conformational virtual screening approach based on machine learning targeting PI3Kγ.
    Zhu J; Jiang Y; Jia L; Xu L; Cai Y; Chen Y; Zhu N; Li H; Jin J
    Mol Divers; 2021 Aug; 25(3):1271-1282. PubMed ID: 34160714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Training based on ligand efficiency improves prediction of bioactivities of ligands and drug target proteins in a machine learning approach.
    Sugaya N
    J Chem Inf Model; 2013 Oct; 53(10):2525-37. PubMed ID: 24020509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting Inhibitors for Multidrug Resistance Associated Protein-2 Transporter by Machine Learning Approach.
    Kharangarh S; Sandhu H; Tangadpalliwar S; Garg P
    Comb Chem High Throughput Screen; 2018; 21(8):557-566. PubMed ID: 30360705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of matrix metal proteinases-12 inhibitors by machine learning approaches.
    Li B; Hu L; Xue Y; Yang M; Huang L; Zhang Z; Liu J; Deng G
    J Biomol Struct Dyn; 2019 Jul; 37(10):2627-2640. PubMed ID: 30051748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance of machine learning methods for ligand-based virtual screening.
    Plewczynski D; Spieser SA; Koch U
    Comb Chem High Throughput Screen; 2009 May; 12(4):358-68. PubMed ID: 19442065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A lazy learning-based QSAR classification study for screening potential histone deacetylase 8 (HDAC8) inhibitors.
    Cao GP; Arooj M; Thangapandian S; Park C; Arulalapperumal V; Kim Y; Kwon YJ; Kim HH; Suh JK; Lee KW
    SAR QSAR Environ Res; 2015; 26(5):397-420. PubMed ID: 25986171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computer-aided diagnosis of lung nodule using gradient tree boosting and Bayesian optimization.
    Nishio M; Nishizawa M; Sugiyama O; Kojima R; Yakami M; Kuroda T; Togashi K
    PLoS One; 2018; 13(4):e0195875. PubMed ID: 29672639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using machine-learning approaches to predict non-participation in a nationwide general health check-up scheme.
    Shimoda A; Ichikawa D; Oyama H
    Comput Methods Programs Biomed; 2018 Sep; 163():39-46. PubMed ID: 30119856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.