BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 30688415)

  • 1. Effects of elamipretide on skeletal muscle in dogs with experimentally induced heart failure.
    Sabbah HN; Gupta RC; Singh-Gupta V; Zhang K
    ESC Heart Fail; 2019 Apr; 6(2):328-335. PubMed ID: 30688415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chronic Therapy With Elamipretide (MTP-131), a Novel Mitochondria-Targeting Peptide, Improves Left Ventricular and Mitochondrial Function in Dogs With Advanced Heart Failure.
    Sabbah HN; Gupta RC; Kohli S; Wang M; Hachem S; Zhang K
    Circ Heart Fail; 2016 Feb; 9(2):e002206. PubMed ID: 26839394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Abnormalities of Mitochondrial Dynamics in the Failing Heart: Normalization Following Long-Term Therapy with Elamipretide.
    Sabbah HN; Gupta RC; Singh-Gupta V; Zhang K; Lanfear DE
    Cardiovasc Drugs Ther; 2018 Aug; 32(4):319-328. PubMed ID: 29951944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of mitochondrial permeability transition pores by cyclosporine A improves cytochrome C oxidase function and increases rate of ATP synthesis in failing cardiomyocytes.
    Sharov VG; Todor AV; Imai M; Sabbah HN
    Heart Fail Rev; 2005 Dec; 10(4):305-10. PubMed ID: 16583179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein acetylation in skeletal muscle mitochondria is involved in impaired fatty acid oxidation and exercise intolerance in heart failure.
    Tsuda M; Fukushima A; Matsumoto J; Takada S; Kakutani N; Nambu H; Yamanashi K; Furihata T; Yokota T; Okita K; Kinugawa S; Anzai T
    J Cachexia Sarcopenia Muscle; 2018 Oct; 9(5):844-859. PubMed ID: 30168279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cyclosporine A normalizes mitochondrial coupling, reactive oxygen species production, and inflammation and partially restores skeletal muscle maximal oxidative capacity in experimental aortic cross-clamping.
    Pottecher J; Guillot M; Belaidi E; Charles AL; Lejay A; Gharib A; Diemunsch P; Geny B
    J Vasc Surg; 2013 Apr; 57(4):1100-1108.e2. PubMed ID: 23332985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The mitochondrially targeted peptide elamipretide (SS-31) improves ADP sensitivity in aged mitochondria by increasing uptake through the adenine nucleotide translocator (ANT).
    Pharaoh G; Kamat V; Kannan S; Stuppard RS; Whitson J; Martín-Pérez M; Qian WJ; MacCoss MJ; Villén J; Rabinovitch P; Campbell MD; Sweet IR; Marcinek DJ
    Geroscience; 2023 Dec; 45(6):3529-3548. PubMed ID: 37462785
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A non-invasive selective assessment of type I fibre mitochondrial function using 31P NMR spectroscopy. Evidence for impaired oxidative phosphorylation rate in skeletal muscle in patients with chronic heart failure.
    van der Ent M; Jeneson JA; Remme WJ; Berger R; Ciampricotti R; Visser F
    Eur Heart J; 1998 Jan; 19(1):124-31. PubMed ID: 9503185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of exercise training on skeletal muscle fibre characteristics in men with chronic heart failure. Correlation between skeletal muscle alterations, cytokines and exercise capacity.
    Larsen AI; Lindal S; Aukrust P; Toft I; Aarsland T; Dickstein K
    Int J Cardiol; 2002 Apr; 83(1):25-32. PubMed ID: 11959380
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of xanthine oxidase in the acute phase of myocardial infarction prevents skeletal muscle abnormalities and exercise intolerance.
    Nambu H; Takada S; Maekawa S; Matsumoto J; Kakutani N; Furihata T; Shirakawa R; Katayama T; Nakajima T; Yamanashi K; Obata Y; Nakano I; Tsuda M; Saito A; Fukushima A; Yokota T; Nio-Kobayashi J; Yasui H; Higashikawa K; Kuge Y; Anzai T; Sabe H; Kinugawa S
    Cardiovasc Res; 2021 Feb; 117(3):805-819. PubMed ID: 32402072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acylated ghrelin treatment normalizes skeletal muscle mitochondrial oxidative capacity and AKT phosphorylation in rat chronic heart failure.
    Barazzoni R; Gortan Cappellari G; Palus S; Vinci P; Ruozi G; Zanetti M; Semolic A; Ebner N; von Haehling S; Sinagra G; Giacca M; Springer J
    J Cachexia Sarcopenia Muscle; 2017 Dec; 8(6):991-998. PubMed ID: 29098797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acute {beta}-adrenergic stimulation does not alter mitochondrial protein synthesis or markers of mitochondrial biogenesis in adult men.
    Robinson MM; Richards JC; Hickey MS; Moore DR; Phillips SM; Bell C; Miller BF
    Am J Physiol Regul Integr Comp Physiol; 2010 Jan; 298(1):R25-33. PubMed ID: 19907002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial function in human skeletal muscle is not impaired by high intensity exercise.
    Tonkonogi M; Walsh B; Tiivel T; Saks V; Sahlin K
    Pflugers Arch; 1999 Mar; 437(4):562-8. PubMed ID: 10089569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of heart failure on skeletal muscle myofibrillar protein content, isoform expression and calcium sensitivity.
    Toth MJ; Palmer BM; LeWinter MM
    Int J Cardiol; 2006 Feb; 107(2):211-9. PubMed ID: 16412799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Skeletal Muscle Mitochondrial Content, Oxidative Capacity, and Mfn2 Expression Are Reduced in Older Patients With Heart Failure and Preserved Ejection Fraction and Are Related to Exercise Intolerance.
    Molina AJ; Bharadwaj MS; Van Horn C; Nicklas BJ; Lyles MF; Eggebeen J; Haykowsky MJ; Brubaker PH; Kitzman DW
    JACC Heart Fail; 2016 Aug; 4(8):636-45. PubMed ID: 27179829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo mitochondrial ATP production is improved in older adult skeletal muscle after a single dose of elamipretide in a randomized trial.
    Roshanravan B; Liu SZ; Ali AS; Shankland EG; Goss C; Amory JK; Robertson HT; Marcinek DJ; Conley KE
    PLoS One; 2021; 16(7):e0253849. PubMed ID: 34264994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The impact of ageing, physical activity, and pre-frailty on skeletal muscle phenotype, mitochondrial content, and intramyocellular lipids in men.
    St-Jean-Pelletier F; Pion CH; Leduc-Gaudet JP; Sgarioto N; Zovilé I; Barbat-Artigas S; Reynaud O; Alkaterji F; Lemieux FC; Grenon A; Gaudreau P; Hepple RT; Chevalier S; Belanger M; Morais JA; Aubertin-Leheudre M; Gouspillou G
    J Cachexia Sarcopenia Muscle; 2017 Apr; 8(2):213-228. PubMed ID: 27897402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heart failure with preserved ejection fraction induces molecular, mitochondrial, histological, and functional alterations in rat respiratory and limb skeletal muscle.
    Bowen TS; Rolim NP; Fischer T; Baekkerud FH; Medeiros A; Werner S; Brønstad E; Rognmo O; Mangner N; Linke A; Schuler G; Silva GJ; Wisløff U; Adams V;
    Eur J Heart Fail; 2015 Mar; 17(3):263-72. PubMed ID: 25655080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Skeletal Muscle Function, Structure, and Metabolism in Patients With Heart Failure With Reduced Ejection Fraction and Heart Failure With Preserved Ejection Fraction.
    Bekfani T; Bekhite Elsaied M; Derlien S; Nisser J; Westermann M; Nietzsche S; Hamadanchi A; Fröb E; Westphal J; Haase D; Kretzschmar T; Schlattmann P; Smolenski UC; Lichtenauer M; Wernly B; Jirak P; Lehmann G; Möbius-Winkler S; Schulze PC
    Circ Heart Fail; 2020 Dec; 13(12):e007198. PubMed ID: 33302709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physical training in patients with stable chronic heart failure: effects on cardiorespiratory fitness and ultrastructural abnormalities of leg muscles.
    Hambrecht R; Niebauer J; Fiehn E; Kälberer B; Offner B; Hauer K; Riede U; Schlierf G; Kübler W; Schuler G
    J Am Coll Cardiol; 1995 May; 25(6):1239-49. PubMed ID: 7722116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.