These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 30688437)

  • 1. Effects of Particle Properties on the Settling and Rise Velocities of Microplastics in Freshwater under Laboratory Conditions.
    Waldschläger K; Schüttrumpf H
    Environ Sci Technol; 2019 Feb; 53(4):1958-1966. PubMed ID: 30688437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Erosion Behavior of Different Microplastic Particles in Comparison to Natural Sediments.
    Waldschläger K; Schüttrumpf H
    Environ Sci Technol; 2019 Nov; 53(22):13219-13227. PubMed ID: 31625729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Settling and rising velocities of environmentally weathered micro- and macroplastic particles.
    Waldschläger K; Born M; Cowger W; Gray A; Schüttrumpf H
    Environ Res; 2020 Dec; 191():110192. PubMed ID: 32956654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Settling behaviors of microplastic disks in water.
    Yang G; Yu Z; Baki ABM; Yao W; Ross M; Chi W; Zhang W
    Mar Pollut Bull; 2023 Mar; 188():114657. PubMed ID: 36736259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Settling velocity of irregularly shaped microplastics under steady and dynamic flow conditions.
    Wang Z; Dou M; Ren P; Sun B; Jia R; Zhou Y
    Environ Sci Pollut Res Int; 2021 Nov; 28(44):62116-62132. PubMed ID: 34184232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrodynamic modelling of traffic-related microplastics discharged with stormwater into the Göta River in Sweden.
    Bondelind M; Sokolova E; Nguyen A; Karlsson D; Karlsson A; Björklund K
    Environ Sci Pollut Res Int; 2020 Jul; 27(19):24218-24230. PubMed ID: 32306266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and quantification of microplastic particles in drinking water treatment sludge as an integrative approach to determine microplastic abundance in a freshwater river.
    Siegel H; Fischer F; Lenz R; Fischer D; Jekel M; Labrenz M
    Environ Pollut; 2021 Oct; 286():117524. PubMed ID: 34116488
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Biofilms and Particle Physical Properties on the Rising and Settling Velocities of Microplastic Fibers and Sheets.
    Jalón-Rojas I; Romero-Ramírez A; Fauquembergue K; Rossignol L; Cachot J; Sous D; Morin B
    Environ Sci Technol; 2022 Jun; 56(12):8114-8123. PubMed ID: 35593651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new model for the terminal settling velocity of microplastics.
    Yu Z; Yang G; Zhang W
    Mar Pollut Bull; 2022 Mar; 176():113449. PubMed ID: 35183949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microplastics in freshwater systems: a review of the emerging threats, identification of knowledge gaps and prioritisation of research needs.
    Eerkes-Medrano D; Thompson RC; Aldridge DC
    Water Res; 2015 May; 75():63-82. PubMed ID: 25746963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid flocculation and settling of positively buoyant microplastic and fine-grained sediment in natural seawater.
    Laursen SN; Fruergaard M; Andersen TJ
    Mar Pollut Bull; 2022 May; 178():113619. PubMed ID: 35378460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of Microplastics' Vertical Concentration Transport (Rouse) Profiles in Flumes.
    Born MP; Brüll C; Schaefer D; Hillebrand G; Schüttrumpf H
    Environ Sci Technol; 2023 Apr; 57(14):5569-5579. PubMed ID: 36976958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Settling velocity of microplastic particles of regular shapes.
    Khatmullina L; Isachenko I
    Mar Pollut Bull; 2017 Jan; 114(2):871-880. PubMed ID: 27863879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deposition and in-situ translocation of microplastics in floodplain soils.
    Weber CJ; Opp C; Prume JA; Koch M; Andersen TJ; Chifflard P
    Sci Total Environ; 2022 May; 819():152039. PubMed ID: 34856256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved Settling Velocity for Microplastic Fibers: A New Shape-Dependent Drag Model.
    Zhang J; Choi CE
    Environ Sci Technol; 2022 Jan; 56(2):962-973. PubMed ID: 34963046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microplastic Pollution in Benthic Midstream Sediments of the Rhine River.
    Mani T; Primpke S; Lorenz C; Gerdts G; Burkhardt-Holm P
    Environ Sci Technol; 2019 May; 53(10):6053-6062. PubMed ID: 31021624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variance and precision of microplastic sampling in urban rivers.
    Tanaka M; Kataoka T; Nihei Y
    Environ Pollut; 2022 Oct; 310():119811. PubMed ID: 35934151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microscopy and elemental analysis characterisation of microplastics in sediment of a freshwater urban river in Scotland, UK.
    Blair RM; Waldron S; Phoenix VR; Gauchotte-Lindsay C
    Environ Sci Pollut Res Int; 2019 Apr; 26(12):12491-12504. PubMed ID: 30848429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using the Asian clam as an indicator of microplastic pollution in freshwater ecosystems.
    Su L; Cai H; Kolandhasamy P; Wu C; Rochman CM; Shi H
    Environ Pollut; 2018 Mar; 234():347-355. PubMed ID: 29195176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Occurrence and Spatial Distribution of Microplastics in River Shore Sediments of the Rhine-Main Area in Germany.
    Klein S; Worch E; Knepper TP
    Environ Sci Technol; 2015 May; 49(10):6070-6. PubMed ID: 25901760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.