BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 30688445)

  • 21. Recognition and removal of oxidized guanines in duplex DNA by the base excision repair enzymes hOGG1, yOGG1, and yOGG2.
    Leipold MD; Workman H; Muller JG; Burrows CJ; David SS
    Biochemistry; 2003 Sep; 42(38):11373-81. PubMed ID: 14503888
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Adenine-DNA adduct derived from the nitroreduction of 6-nitrochrysene is more resistant to nucleotide excision repair than guanine-DNA adducts.
    Krzeminski J; Kropachev K; Reeves D; Kolbanovskiy A; Kolbanovskiy M; Chen KM; Sharma AK; Geacintov N; Amin S; El-Bayoumy K
    Chem Res Toxicol; 2013 Nov; 26(11):1746-54. PubMed ID: 24112095
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nucleotide Excision Repair and Impact of Site-Specific 5',8-Cyclopurine and Bulky DNA Lesions on the Physical Properties of Nucleosomes.
    Shafirovich V; Kolbanovskiy M; Kropachev K; Liu Z; Cai Y; Terzidis MA; Masi A; Chatgilialoglu C; Amin S; Dadali A; Broyde S; Geacintov NE
    Biochemistry; 2019 Feb; 58(6):561-574. PubMed ID: 30570250
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nucleotide excision repair-initiating proteins bind to oxidative DNA lesions in vivo.
    Menoni H; Hoeijmakers JH; Vermeulen W
    J Cell Biol; 2012 Dec; 199(7):1037-46. PubMed ID: 23253478
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Remarkable Enhancement of Nucleotide Excision Repair of a Bulky Guanine Lesion in a Covalently Closed Circular DNA Plasmid Relative to the Same Linearized Plasmid.
    Kolbanovskiy M; Aharonoff A; Sales AH; Geacintov NE; Shafirovich V
    Biochemistry; 2020 Aug; 59(31):2842-2848. PubMed ID: 32786887
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Removal of hydantoin products of 8-oxoguanine oxidation by the Escherichia coli DNA repair enzyme, FPG.
    Leipold MD; Muller JG; Burrows CJ; David SS
    Biochemistry; 2000 Dec; 39(48):14984-92. PubMed ID: 11101315
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differential nucleotide excision repair susceptibility of bulky DNA adducts in different sequence contexts: hierarchies of recognition signals.
    Cai Y; Patel DJ; Geacintov NE; Broyde S
    J Mol Biol; 2009 Jan; 385(1):30-44. PubMed ID: 18948114
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Base excision repair in nuclear and mitochondrial DNA.
    Dianov GL; Souza-Pinto N; Nyaga SG; Thybo T; Stevnsner T; Bohr VA
    Prog Nucleic Acid Res Mol Biol; 2001; 68():285-97. PubMed ID: 11554304
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The type of DNA glycosylase determines the base excision repair pathway in mammalian cells.
    Fortini P; Parlanti E; Sidorkina OM; Laval J; Dogliotti E
    J Biol Chem; 1999 May; 274(21):15230-6. PubMed ID: 10329732
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Upregulation of mNEIL3 in Ogg1-null cells is a potential backup mechanism for 8-oxoG repair.
    Higgs EB; Godschalk R; Langie SAS; van Schooten FJ; Hodges NJ
    Mutagenesis; 2021 Nov; 36(6):437-444. PubMed ID: 34644377
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The mitochondrial transcription factor A functions in mitochondrial base excision repair.
    Canugovi C; Maynard S; Bayne AC; Sykora P; Tian J; de Souza-Pinto NC; Croteau DL; Bohr VA
    DNA Repair (Amst); 2010 Oct; 9(10):1080-9. PubMed ID: 20739229
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The involvement of nucleotide excision repair proteins in the removal of oxidative DNA damage.
    Kumar N; Raja S; Van Houten B
    Nucleic Acids Res; 2020 Nov; 48(20):11227-11243. PubMed ID: 33010169
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional, genetic, and epigenetic aspects of base and nucleotide excision repair in colorectal carcinomas.
    Slyskova J; Korenkova V; Collins AR; Prochazka P; Vodickova L; Svec J; Lipska L; Levy M; Schneiderova M; Liska V; Holubec L; Kumar R; Soucek P; Naccarati A; Vodicka P
    Clin Cancer Res; 2012 Nov; 18(21):5878-87. PubMed ID: 22966016
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dynamics of a benzo[a]pyrene-derived guanine DNA lesion in TGT and CGC sequence contexts: enhanced mobility in TGT explains conformational heterogeneity, flexible bending, and greater susceptibility to nucleotide excision repair.
    Cai Y; Patel DJ; Geacintov NE; Broyde S
    J Mol Biol; 2007 Nov; 374(2):292-305. PubMed ID: 17942115
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An assay to detect DNA-damaging agents that induce nucleotide excision-repairable DNA lesions in living human cells.
    Takatsuka R; Ito S; Iwai S; Kuraoka I
    Mutat Res Genet Toxicol Environ Mutagen; 2017 Aug; 820():1-7. PubMed ID: 28676261
    [TBL] [Abstract][Full Text] [Related]  

  • 36. End modification of a linear DNA duplex enhances NER-mediated excision of an internal Pt(II)-lesion.
    Mason TM; Smeaton MB; Cheung JC; Hanakahi LA; Miller PS
    Bioconjug Chem; 2008 May; 19(5):1064-70. PubMed ID: 18447369
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural, energetic and dynamic properties of guanine(C8)-thymine(N3) cross-links in DNA provide insights on susceptibility to nucleotide excision repair.
    Ding S; Kropachev K; Cai Y; Kolbanovskiy M; Durandina SA; Liu Z; Shafirovich V; Broyde S; Geacintov NE
    Nucleic Acids Res; 2012 Mar; 40(6):2506-17. PubMed ID: 22135299
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Understanding the sequence and structural context effects in oxidative DNA damage repair.
    Sassa A; Odagiri M
    DNA Repair (Amst); 2020 Sep; 93():102906. PubMed ID: 33087272
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Resistance of bulky DNA lesions to nucleotide excision repair can result from extensive aromatic lesion-base stacking interactions.
    Reeves DA; Mu H; Kropachev K; Cai Y; Ding S; Kolbanovskiy A; Kolbanovskiy M; Chen Y; Krzeminski J; Amin S; Patel DJ; Broyde S; Geacintov NE
    Nucleic Acids Res; 2011 Nov; 39(20):8752-64. PubMed ID: 21764772
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nei deficient Escherichia coli are sensitive to chromate and accumulate the oxidized guanine lesion spiroiminodihydantoin.
    Hailer MK; Slade PG; Martin BD; Sugden KD
    Chem Res Toxicol; 2005 Sep; 18(9):1378-83. PubMed ID: 16167829
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.