These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
504 related articles for article (PubMed ID: 30689057)
1. Biofabrication for osteochondral tissue regeneration: bioink printability requirements. Abdulghani S; Morouço PG J Mater Sci Mater Med; 2019 Jan; 30(2):20. PubMed ID: 30689057 [TBL] [Abstract][Full Text] [Related]
2. Preparation of Polymeric and Composite Scaffolds by 3D Bioprinting. Mora-Boza A; Lopez-Donaire ML Adv Exp Med Biol; 2018; 1058():221-245. PubMed ID: 29691824 [TBL] [Abstract][Full Text] [Related]
3. 3D Bioprinting for Cartilage and Osteochondral Tissue Engineering. Daly AC; Freeman FE; Gonzalez-Fernandez T; Critchley SE; Nulty J; Kelly DJ Adv Healthc Mater; 2017 Nov; 6(22):. PubMed ID: 28804984 [TBL] [Abstract][Full Text] [Related]
4. 3D-bioprinted functional and biomimetic hydrogel scaffolds incorporated with nanosilicates to promote bone healing in rat calvarial defect model. Liu B; Li J; Lei X; Cheng P; Song Y; Gao Y; Hu J; Wang C; Zhang S; Li D; Wu H; Sang H; Bi L; Pei G Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110905. PubMed ID: 32409059 [TBL] [Abstract][Full Text] [Related]
5. Bio-inspired hydrogel composed of hyaluronic acid and alginate as a potential bioink for 3D bioprinting of articular cartilage engineering constructs. Antich C; de Vicente J; Jiménez G; Chocarro C; Carrillo E; Montañez E; Gálvez-Martín P; Marchal JA Acta Biomater; 2020 Apr; 106():114-123. PubMed ID: 32027992 [TBL] [Abstract][Full Text] [Related]
6. Collagen-based bioinks for hard tissue engineering applications: a comprehensive review. Marques CF; Diogo GS; Pina S; Oliveira JM; Silva TH; Reis RL J Mater Sci Mater Med; 2019 Mar; 30(3):32. PubMed ID: 30840132 [TBL] [Abstract][Full Text] [Related]
7. Tethered TGF-β1 in a Hyaluronic Acid-Based Bioink for Bioprinting Cartilaginous Tissues. Hauptstein J; Forster L; Nadernezhad A; Groll J; Teßmar J; Blunk T Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35055112 [TBL] [Abstract][Full Text] [Related]
8. Advancing bioinks for 3D bioprinting using reactive fillers: A review. Heid S; Boccaccini AR Acta Biomater; 2020 Sep; 113():1-22. PubMed ID: 32622053 [TBL] [Abstract][Full Text] [Related]
9. Nanoengineered Osteoinductive Bioink for 3D Bioprinting Bone Tissue. Chimene D; Miller L; Cross LM; Jaiswal MK; Singh I; Gaharwar AK ACS Appl Mater Interfaces; 2020 Apr; 12(14):15976-15988. PubMed ID: 32091189 [TBL] [Abstract][Full Text] [Related]
10. Bioprinting Via a Dual-Gel Bioink Based on Poly(Vinyl Alcohol) and Solubilized Extracellular Matrix towards Cartilage Engineering. Setayeshmehr M; Hafeez S; van Blitterswijk C; Moroni L; Mota C; Baker MB Int J Mol Sci; 2021 Apr; 22(8):. PubMed ID: 33918892 [TBL] [Abstract][Full Text] [Related]
11. A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage. Daly AC; Critchley SE; Rencsok EM; Kelly DJ Biofabrication; 2016 Oct; 8(4):045002. PubMed ID: 27716628 [TBL] [Abstract][Full Text] [Related]
12. Recent Trends in Decellularized Extracellular Matrix Bioinks for 3D Printing: An Updated Review. Dzobo K; Motaung KSCM; Adesida A Int J Mol Sci; 2019 Sep; 20(18):. PubMed ID: 31540457 [TBL] [Abstract][Full Text] [Related]
13. Employing PEG crosslinkers to optimize cell viability in gel phase bioinks and tailor post printing mechanical properties. Rutz AL; Gargus ES; Hyland KE; Lewis PL; Setty A; Burghardt WR; Shah RN Acta Biomater; 2019 Nov; 99():121-132. PubMed ID: 31539655 [TBL] [Abstract][Full Text] [Related]
14. ECM Based Bioink for Tissue Mimetic 3D Bioprinting. Nam SY; Park SH Adv Exp Med Biol; 2018; 1064():335-353. PubMed ID: 30471042 [TBL] [Abstract][Full Text] [Related]
15. 3D bioprinting of photo-crosslinkable silk methacrylate (SilMA)-polyethylene glycol diacrylate (PEGDA) bioink for cartilage tissue engineering. Bandyopadhyay A; Mandal BB; Bhardwaj N J Biomed Mater Res A; 2022 Apr; 110(4):884-898. PubMed ID: 34913587 [TBL] [Abstract][Full Text] [Related]
16. Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Ouyang L; Yao R; Zhao Y; Sun W Biofabrication; 2016 Sep; 8(3):035020. PubMed ID: 27634915 [TBL] [Abstract][Full Text] [Related]
17. Controllable fabrication of hydroxybutyl chitosan/oxidized chondroitin sulfate hydrogels by 3D bioprinting technique for cartilage tissue engineering. Li C; Wang K; Zhou X; Li T; Xu Y; Qiang L; Peng M; Xu Y; Xie L; He C; Wang B; Wang J Biomed Mater; 2019 Jan; 14(2):025006. PubMed ID: 30557856 [TBL] [Abstract][Full Text] [Related]
18. Bioprinting of 3D Tissue Models Using Decellularized Extracellular Matrix Bioink. Pati F; Cho DW Methods Mol Biol; 2017; 1612():381-390. PubMed ID: 28634957 [TBL] [Abstract][Full Text] [Related]
19. A comparative study on collagen type I and hyaluronic acid dependent cell behavior for osteochondral tissue bioprinting. Park JY; Choi JC; Shim JH; Lee JS; Park H; Kim SW; Doh J; Cho DW Biofabrication; 2014 Sep; 6(3):035004. PubMed ID: 24758832 [TBL] [Abstract][Full Text] [Related]
20. Development of Bioink from Decellularized Tendon Extracellular Matrix for 3D Bioprinting. Toprakhisar B; Nadernezhad A; Bakirci E; Khani N; Skvortsov GA; Koc B Macromol Biosci; 2018 Oct; 18(10):e1800024. PubMed ID: 30019414 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]