BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 30689084)

  • 1. Pharmacosynthetic Deconstruction of Sleep-Wake Circuits in the Brain.
    Varin C; Bonnavion P
    Handb Exp Pharmacol; 2019; 253():153-206. PubMed ID: 30689084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sleep and Wakefulness Are Controlled by Ventral Medial Midbrain/Pons GABAergic Neurons in Mice.
    Takata Y; Oishi Y; Zhou XZ; Hasegawa E; Takahashi K; Cherasse Y; Sakurai T; Lazarus M
    J Neurosci; 2018 Nov; 38(47):10080-10092. PubMed ID: 30282729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Selective stimulations and lesions of the rat brain nuclei as the models for research of the human sleep pathology mechanisms].
    Šaponjić J
    Glas Srp Akad Nauka Med; 2011; (51):85-97. PubMed ID: 22165729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New Neuroscience Tools That Are Identifying the Sleep-Wake Circuit.
    Shiromani PJ; Peever JH
    Sleep; 2017 Apr; 40(4):. PubMed ID: 28329204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brain Circuitry Controlling Sleep and Wakefulness.
    Horner RL; Peever JH
    Continuum (Minneap Minn); 2017 Aug; 23(4, Sleep Neurology):955-972. PubMed ID: 28777170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuro-orchestration of sleep and wakefulness.
    Sulaman BA; Wang S; Tyan J; Eban-Rothschild A
    Nat Neurosci; 2023 Feb; 26(2):196-212. PubMed ID: 36581730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dorsal Raphe Dopamine Neurons Modulate Arousal and Promote Wakefulness by Salient Stimuli.
    Cho JR; Treweek JB; Robinson JE; Xiao C; Bremner LR; Greenbaum A; Gradinaru V
    Neuron; 2017 Jun; 94(6):1205-1219.e8. PubMed ID: 28602690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optogenetic deconstruction of sleep-wake circuitry in the brain.
    Adamantidis A; Carter MC; de Lecea L
    Front Mol Neurosci; 2010; 2():31. PubMed ID: 20126433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Newly identified sleep-wake and circadian circuits as potential therapeutic targets.
    Venner A; Todd WD; Fraigne J; Bowrey H; Eban-Rothschild A; Kaur S; Anaclet C
    Sleep; 2019 May; 42(5):. PubMed ID: 30722061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Neurochemical mechanisms of sleep regulation].
    Glas Srp Akad Nauka Med; 2009; (50):97-109. PubMed ID: 20666118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hypothalamic Tuberomammillary Nucleus Neurons: Electrophysiological Diversity and Essential Role in Arousal Stability.
    Fujita A; Bonnavion P; Wilson MH; Mickelsen LE; Bloit J; de Lecea L; Jackson AC
    J Neurosci; 2017 Sep; 37(39):9574-9592. PubMed ID: 28874450
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural Circuitry of Wakefulness and Sleep.
    Scammell TE; Arrigoni E; Lipton JO
    Neuron; 2017 Feb; 93(4):747-765. PubMed ID: 28231463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activation of the ventral tegmental area increased wakefulness in mice.
    Sun HX; Wang DR; Ye CB; Hu ZZ; Wang CY; Huang ZL; Yang SR
    Sleep Biol Rhythms; 2017; 15(2):107-115. PubMed ID: 28386207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cholinergic, Glutamatergic, and GABAergic Neurons of the Pedunculopontine Tegmental Nucleus Have Distinct Effects on Sleep/Wake Behavior in Mice.
    Kroeger D; Ferrari LL; Petit G; Mahoney CE; Fuller PM; Arrigoni E; Scammell TE
    J Neurosci; 2017 Feb; 37(5):1352-1366. PubMed ID: 28039375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Controlling sleep/wakefulness using optogenetics].
    Yamanaka A
    Nihon Shinkei Seishin Yakurigaku Zasshi; 2015 Aug; 35(4):97-102. PubMed ID: 26434098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Underlying brain mechanisms that regulate sleep-wakefulness cycles.
    Gvilia I
    Int Rev Neurobiol; 2010; 93():1-21. PubMed ID: 20969999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regional cerebral blood flow throughout the sleep-wake cycle. An H2(15)O PET study.
    Braun AR; Balkin TJ; Wesenten NJ; Carson RE; Varga M; Baldwin P; Selbie S; Belenky G; Herscovitch P
    Brain; 1997 Jul; 120 ( Pt 7)():1173-97. PubMed ID: 9236630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neurophysiological mechanisms of sleep and wakefulness: a question of balance.
    Sinton CM; McCarley RW
    Semin Neurol; 2004 Sep; 24(3):211-23. PubMed ID: 15449215
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multimodal Imaging for DREADD-Expressing Neurons in Living Brain and Their Application to Implantation of iPSC-Derived Neural Progenitors.
    Ji B; Kaneko H; Minamimoto T; Inoue H; Takeuchi H; Kumata K; Zhang MR; Aoki I; Seki C; Ono M; Tokunaga M; Tsukamoto S; Tanabe K; Shin RM; Minamihisamatsu T; Kito S; Richmond BJ; Suhara T; Higuchi M
    J Neurosci; 2016 Nov; 36(45):11544-11558. PubMed ID: 27911758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential Role of Pontomedullary Glutamatergic Neuronal Populations in Sleep-Wake Control.
    Erickson ETM; Ferrari LL; Gompf HS; Anaclet C
    Front Neurosci; 2019; 13():755. PubMed ID: 31417341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.