These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 30689084)

  • 21. A Circadian Output Circuit Controls Sleep-Wake Arousal in Drosophila.
    Guo F; Holla M; Díaz MM; Rosbash M
    Neuron; 2018 Nov; 100(3):624-635.e4. PubMed ID: 30269992
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Novel concepts in sleep regulation.
    Wigren HK; Porkka-Heiskanen T
    Acta Physiol (Oxf); 2018 Apr; 222(4):e13017. PubMed ID: 29253320
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Activation of Basal Forebrain Astrocytes Induces Wakefulness without Compensatory Changes in Sleep Drive.
    Ingiosi AM; Hayworth CR; Frank MG
    J Neurosci; 2023 Aug; 43(32):5792-5809. PubMed ID: 37487739
    [TBL] [Abstract][Full Text] [Related]  

  • 24. What single-unit recording studies tell us about the basic mechanisms of sleep and wakefulness.
    Sakai K
    Eur J Neurosci; 2020 Sep; 52(6):3507-3530. PubMed ID: 31211887
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adenosine and Sleep.
    Lazarus M; Chen JF; Huang ZL; Urade Y; Fredholm BB
    Handb Exp Pharmacol; 2019; 253():359-381. PubMed ID: 28646346
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sleep-Wake Neurobiology.
    Vanini G; Torterolo P
    Adv Exp Med Biol; 2021; 1297():65-82. PubMed ID: 33537937
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Basal Forebrain Cholinergic Neurons Primarily Contribute to Inhibition of Electroencephalogram Delta Activity, Rather Than Inducing Behavioral Wakefulness in Mice.
    Chen L; Yin D; Wang TX; Guo W; Dong H; Xu Q; Luo YJ; Cherasse Y; Lazarus M; Qiu ZL; Lu J; Qu WM; Huang ZL
    Neuropsychopharmacology; 2016 Jul; 41(8):2133-46. PubMed ID: 26797244
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optogenetic Dissection of Sleep-Wake States In Vitro and In Vivo.
    Adamantidis A; Lüthi A
    Handb Exp Pharmacol; 2019; 253():125-151. PubMed ID: 29687163
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Melanin-concentrating hormone neurons specifically promote rapid eye movement sleep in mice.
    Vetrivelan R; Kong D; Ferrari LL; Arrigoni E; Madara JC; Bandaru SS; Lowell BB; Lu J; Saper CB
    Neuroscience; 2016 Nov; 336():102-113. PubMed ID: 27595887
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A quartet neural system model orchestrating sleep and wakefulness mechanisms.
    Tamakawa Y; Karashima A; Koyama Y; Katayama N; Nakao M
    J Neurophysiol; 2006 Apr; 95(4):2055-69. PubMed ID: 16282204
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Neurobiology of the sleep-wake cycle: sleep architecture, circadian regulation, and regulatory feedback.
    Fuller PM; Gooley JJ; Saper CB
    J Biol Rhythms; 2006 Dec; 21(6):482-93. PubMed ID: 17107938
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Discharge and Role of Acetylcholine Pontomesencephalic Neurons in Cortical Activity and Sleep-Wake States Examined by Optogenetics and Juxtacellular Recording in Mice.
    Cissé Y; Toossi H; Ishibashi M; Mainville L; Leonard CS; Adamantidis A; Jones BE
    eNeuro; 2018; 5(4):. PubMed ID: 30225352
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The neurobiology of sleep.
    Saper CB
    Continuum (Minneap Minn); 2013 Feb; 19(1 Sleep Disorders):19-31. PubMed ID: 23385692
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Dynamics of the neuronal activity of the amygdaloid complex of the rat brain in the sleep-wakefulness cycle].
    Mgaloblishvili MM; Mandzhavidze ShD
    Neirofiziologiia; 1985; 17(6):747-56. PubMed ID: 4088380
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Medial Parabrachial Nucleus Is Essential in Controlling Wakefulness in Rats.
    Xu Q; Wang DR; Dong H; Chen L; Lu J; Lazarus M; Cherasse Y; Chen GH; Qu WM; Huang ZL
    Front Neurosci; 2021; 15():645877. PubMed ID: 33841086
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-frequency gamma electroencephalogram activity in association with sleep-wake states and spontaneous behaviors in the rat.
    Maloney KJ; Cape EG; Gotman J; Jones BE
    Neuroscience; 1997 Jan; 76(2):541-55. PubMed ID: 9015337
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Excitation of the brain stem pedunculopontine tegmentum cholinergic cells induces wakefulness and REM sleep.
    Datta S; Siwek DF
    J Neurophysiol; 1997 Jun; 77(6):2975-88. PubMed ID: 9212250
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Why Does Sleep Slow-Wave Activity Increase After Extended Wake? Assessing the Effects of Increased Cortical Firing During Wake and Sleep.
    Rodriguez AV; Funk CM; Vyazovskiy VV; Nir Y; Tononi G; Cirelli C
    J Neurosci; 2016 Dec; 36(49):12436-12447. PubMed ID: 27927960
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Major neurotransmitters involved in the regulation of sleep-wake cycle].
    Franco-Pérez J; Ballesteros-Zebadúa P; Custodio V; Paz C
    Rev Invest Clin; 2012; 64(2):182-91. PubMed ID: 22991780
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Dynamics of the neuronal activity of midbrain reticular nuclei in the sleep-wakefulness cycle].
    Oniani TN; Gvetadze LB; Mandzhavidze ShD
    Neirofiziologiia; 1984; 16(5):678-90. PubMed ID: 6514063
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.