These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 30689337)

  • 21. Multi-carboxylic magnetic gel from hyperbranched polyglycerol formed by thiol-ene photopolymerization for efficient and selective adsorption of methylene blue and methyl violet dyes.
    Song Y; Duan Y; Zhou L
    J Colloid Interface Sci; 2018 Nov; 529():139-149. PubMed ID: 29886226
    [TBL] [Abstract][Full Text] [Related]  

  • 22. One-Step Fabrication of Dual Responsive Lignin Coated Fe₃O₄ Nanoparticles for Efficient Removal of Cationic and Anionic Dyes.
    Li X; He Y; Sui H; He L
    Nanomaterials (Basel); 2018 Mar; 8(3):. PubMed ID: 29538283
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High efficiency removal of methylene blue using SDS surface-modified ZnFe
    Zhang P; Lo I; O'Connor D; Pehkonen S; Cheng H; Hou D
    J Colloid Interface Sci; 2017 Dec; 508():39-48. PubMed ID: 28818655
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A critical review on recent advancements of the removal of reactive dyes from dyehouse effluent by ion-exchange adsorbents.
    Hassan MM; Carr CM
    Chemosphere; 2018 Oct; 209():201-219. PubMed ID: 29933158
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chitosan-edible oil based materials as upgraded adsorbents for textile dyes.
    Dos Santos CC; Mouta R; Junior MCC; Santana SAA; Silva HADS; Bezerra CWB
    Carbohydr Polym; 2018 Jan; 180():182-191. PubMed ID: 29103494
    [TBL] [Abstract][Full Text] [Related]  

  • 26. NiO111 nanosheets as efficient and recyclable adsorbents for dye pollutant removal from wastewater.
    Song Z; Chen L; Hu J; Richards R
    Nanotechnology; 2009 Jul; 20(27):275707. PubMed ID: 19531863
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Removal of textile dyes from textile dye effluent using TBAB based aqueous biphasic systems.
    Dilip M; Venkateswaran P; Palanivelu K
    J Environ Sci Eng; 2005 Jul; 47(3):176-81. PubMed ID: 16841455
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Adsorption of methylene blue and Congo red from aqueous solution by activated carbon and carbon nanotubes.
    Szlachta M; Wójtowicz P
    Water Sci Technol; 2013; 68(10):2240-8. PubMed ID: 24292474
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Textile dye removal by natural clay--case study of Fouchana Tunisian clay.
    Errais E; Duplay J; Darragi F
    Environ Technol; 2010 Apr; 31(4):373-80. PubMed ID: 20450111
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Some properties of a granular activated carbon-sequencing batch reactor (GAC-SBR) system for treatment of textile wastewater containing direct dyes.
    Sirianuntapiboon S; Sadahiro O; Salee P
    J Environ Manage; 2007 Oct; 85(1):162-70. PubMed ID: 17046148
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Three-dimensional graphene oxide nanostructure for fast and efficient water-soluble dye removal.
    Liu F; Chung S; Oh G; Seo TS
    ACS Appl Mater Interfaces; 2012 Feb; 4(2):922-7. PubMed ID: 22206476
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Elimination of textile dyes using activated carbons prepared from vegetable residues and their characterization.
    Peláez-Cid AA; Herrera-González AM; Salazar-Villanueva M; Bautista-Hernández A
    J Environ Manage; 2016 Oct; 181():269-278. PubMed ID: 27372249
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Highly effective adsorption of cationic and anionic dyes on magnetic Fe/Ni nanoparticles doped bimodal mesoporous carbon.
    Liu Y; Zeng G; Tang L; Cai Y; Pang Y; Zhang Y; Yang G; Zhou Y; He X; He Y
    J Colloid Interface Sci; 2015 Jun; 448():451-9. PubMed ID: 25765736
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rapid and tunable selective adsorption of dyes using thermally oxidized nanodiamond.
    Molavi H; Shojaei A; Pourghaderi A
    J Colloid Interface Sci; 2018 Aug; 524():52-64. PubMed ID: 29631219
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A comparative adsorption study with different industrial wastes as adsorbents for the removal of cationic dyes from water.
    Bhatnagar A; Jain AK
    J Colloid Interface Sci; 2005 Jan; 281(1):49-55. PubMed ID: 15567379
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adsorption of dyes on carbon nanomaterials from aqueous solutions.
    Rodríguez A; Ovejero G; Sotelo JL; Mestanza M; García J
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010 Oct; 45(12):1642-53. PubMed ID: 20730657
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adsorptive removal and photocatalytic decomposition of cationic dyes on niobium oxide with deformed orthorhombic structure.
    Taher T; Yoshida A; Lesbani A; Kurnia I; Guan G; Abudula A; Ueda W
    J Hazard Mater; 2021 Aug; 415():125635. PubMed ID: 33770681
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Decolorization of reactive dyes in solar pond reactors: Perspectives and challenges for the textile industry.
    Chavaco LC; Arcos CA; Prato-Garcia D
    J Environ Manage; 2017 Aug; 198(Pt 1):203-212. PubMed ID: 28460327
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-efficiency extraction of bromocresol purple dye and heavy metals as chromium from industrial effluent by adsorption onto a modified surface of zeolite: Kinetics and equilibrium study.
    Aljerf L
    J Environ Manage; 2018 Nov; 225():120-132. PubMed ID: 30075305
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Performance of TX-100 and TX-114 for the separation of chrysoidine dye using cloud point extraction.
    Purkait MK; DasGupta S; De S
    J Hazard Mater; 2006 Sep; 137(2):827-35. PubMed ID: 16600488
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.