BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 30689375)

  • 21. Exploring binding modes of the selected inhibitors to phosphodiesterase delta by all-atom molecular dynamics simulations and free energy calculations.
    Zhong H; Zhang YJ; Shan XB
    J Biomol Struct Dyn; 2019 Jun; 37(9):2415-2429. PubMed ID: 30052144
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Use of a QM/MM-based FEP method to evaluate the anomalous hydration behavior of simple alkyl amines and amides: application to the design of FBPase inhibitors for the treatment of type-2 diabetes.
    Reddy MR; Singh UC; Erion MD
    J Am Chem Soc; 2011 Jun; 133(21):8059-61. PubMed ID: 21545145
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Docking study and binding free energy calculation of poly (ADP-ribose) polymerase inhibitors.
    Ohno K; Mitsui T; Tanida Y; Matsuura A; Fujitani H; Niimi T; Orita M
    J Mol Model; 2011 Feb; 17(2):383-9. PubMed ID: 20480380
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Accurate Modeling of Scaffold Hopping Transformations in Drug Discovery.
    Wang L; Deng Y; Wu Y; Kim B; LeBard DN; Wandschneider D; Beachy M; Friesner RA; Abel R
    J Chem Theory Comput; 2017 Jan; 13(1):42-54. PubMed ID: 27933808
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Free energy calculations to estimate ligand-binding affinities in structure-based drug design.
    Reddy MR; Reddy CR; Rathore RS; Erion MD; Aparoy P; Reddy RN; Reddanna P
    Curr Pharm Des; 2014; 20(20):3323-37. PubMed ID: 23947646
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Relative binding affinity prediction of farnesoid X receptor in the D3R Grand Challenge 2 using FEP.
    Schindler C; Rippmann F; Kuhn D
    J Comput Aided Mol Des; 2018 Jan; 32(1):265-272. PubMed ID: 28900792
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reduced Free Energy Perturbation/Hamiltonian Replica Exchange Molecular Dynamics Method with Unbiased Alchemical Thermodynamic Axis.
    Jiang W; Thirman J; Jo S; Roux B
    J Phys Chem B; 2018 Oct; 122(41):9435-9442. PubMed ID: 30253098
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Calculation of the standard binding free energy of sparsomycin to the ribosomal peptidyl-transferase P-site using molecular dynamics simulations with restraining potentials.
    Ge X; Roux B
    J Mol Recognit; 2010; 23(2):128-41. PubMed ID: 20151411
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Are Deep Learning Structural Models Sufficiently Accurate for Free-Energy Calculations? Application of FEP+ to AlphaFold2-Predicted Structures.
    Beuming T; Martín H; Díaz-Rovira AM; Díaz L; Guallar V; Ray SS
    J Chem Inf Model; 2022 Sep; 62(18):4351-4360. PubMed ID: 36099477
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Predicting the Binding of Fatty Acid Amide Hydrolase Inhibitors by Free Energy Perturbation.
    Saha A; Shih AY; Mirzadegan T; Seierstad M
    J Chem Theory Comput; 2018 Nov; 14(11):5815-5822. PubMed ID: 30289722
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Computation of standard binding free energies of polar and charged ligands to the glutamate receptor GluA2.
    Heinzelmann G; Chen PC; Kuyucak S
    J Phys Chem B; 2014 Feb; 118(7):1813-24. PubMed ID: 24479628
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Absolute Binding Free Energy Calculations for Highly Flexible Protein MDM2 and Its Inhibitors.
    Singh N; Li W
    Int J Mol Sci; 2020 Jul; 21(13):. PubMed ID: 32635537
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Free Energy Calculations for Protein-Ligand Binding Prediction.
    Jespers W; Åqvist J; Gutiérrez-de-Terán H
    Methods Mol Biol; 2021; 2266():203-226. PubMed ID: 33759129
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Automated, Accurate, and Scalable Relative Protein-Ligand Binding Free-Energy Calculations Using Lambda Dynamics.
    Raman EP; Paul TJ; Hayes RL; Brooks CL
    J Chem Theory Comput; 2020 Dec; 16(12):7895-7914. PubMed ID: 33201701
    [TBL] [Abstract][Full Text] [Related]  

  • 35. How to deal with multiple binding poses in alchemical relative protein-ligand binding free energy calculations.
    Kaus JW; Harder E; Lin T; Abel R; McCammon JA; Wang L
    J Chem Theory Comput; 2015 Jun; 11(6):2670-9. PubMed ID: 26085821
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Large scale free energy calculations for blind predictions of protein-ligand binding: the D3R Grand Challenge 2015.
    Deng N; Flynn WF; Xia J; Vijayan RS; Zhang B; He P; Mentes A; Gallicchio E; Levy RM
    J Comput Aided Mol Des; 2016 Sep; 30(9):743-751. PubMed ID: 27562018
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modeling Local Structural Rearrangements Using FEP/REST: Application to Relative Binding Affinity Predictions of CDK2 Inhibitors.
    Wang L; Deng Y; Knight JL; Wu Y; Kim B; Sherman W; Shelley JC; Lin T; Abel R
    J Chem Theory Comput; 2013 Feb; 9(2):1282-93. PubMed ID: 26588769
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CHARMM-GUI Ligand Binder for absolute binding free energy calculations and its application.
    Jo S; Jiang W; Lee HS; Roux B; Im W
    J Chem Inf Model; 2013 Jan; 53(1):267-77. PubMed ID: 23205773
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A water-swap reaction coordinate for the calculation of absolute protein-ligand binding free energies.
    Woods CJ; Malaisree M; Hannongbua S; Mulholland AJ
    J Chem Phys; 2011 Feb; 134(5):054114. PubMed ID: 21303099
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of a quantum mechanics-based free-energy perturbation method: use in the calculation of relative solvation free energies.
    Reddy MR; Singh UC; Erion MD
    J Am Chem Soc; 2004 May; 126(20):6224-5. PubMed ID: 15149207
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.