These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 30689521)

  • 21. Characterization of lower-limbs inter-segment coordination during the take-off extension in ski jumping.
    Chardonnens J; Favre J; Cuendet F; Gremion G; Aminian K
    Hum Mov Sci; 2013 Aug; 32(4):741-52. PubMed ID: 23810716
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biomechanics research in ski jumping, 1991-2006.
    Schwameder H
    Sports Biomech; 2008 Jan; 7(1):114-36. PubMed ID: 18341140
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A heuristic model-based approach for compensating wind effects in ski jumping.
    Jung A; Müller W; Virmavirta M
    J Biomech; 2021 Aug; 125():110585. PubMed ID: 34233216
    [TBL] [Abstract][Full Text] [Related]  

  • 24. How do elite ski jumpers handle the dynamic conditions in imitation jumps?
    Ettema G; Hooiveld J; Braaten S; Bobbert M
    J Sports Sci; 2016; 34(11):1081-7. PubMed ID: 26368027
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impact of skier actions on the gliding times in alpine skiing.
    Federolf P; Scheiber P; Rauscher E; Schwameder H; Lüthi A; Rhyner HU; Müller E
    Scand J Med Sci Sports; 2008 Dec; 18(6):790-7. PubMed ID: 18248548
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optimization of the flight technique in ski jumping: The influence of wind.
    Jung A; Müller W; Staat M
    J Biomech; 2019 May; 88():190-193. PubMed ID: 30940358
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of Exclusive Double Poling to Classic Techniques of Cross-country Skiing.
    Stöggl T; Ohtonen O; Takeda M; Miyamoto N; Snyder C; Lemmettylä T; Linnamo V; Lindinger SJ
    Med Sci Sports Exerc; 2019 Apr; 51(4):760-772. PubMed ID: 30418963
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Concurrent Development of Endurance Capacity and Explosiveness: Training Characteristics of World-Class Nordic-Combined Athletes.
    Tønnessen E; Rasdal V; Svendsen IS; Haugen TA; Hem E; Sandbakk Ø
    Int J Sports Physiol Perform; 2016 Jul; 11(5):643-51. PubMed ID: 26561961
    [TBL] [Abstract][Full Text] [Related]  

  • 29. How Do World-Class Nordic Combined Athletes Differ From Specialized Cross-Country Skiers and Ski Jumpers in Sport-Specific Capacity and Training Characteristics?
    Sandbakk Ø; Rasdal V; Bråten S; Moen F; Ettema G
    Int J Sports Physiol Perform; 2016 Oct; 11(7):899-906. PubMed ID: 26791774
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of posture on the aerodynamic characteristics during take-off in ski jumping.
    Yamamoto K; Tsubokura M; Ikeda J; Onishi K; Baleriola S
    J Biomech; 2016 Nov; 49(15):3688-3696. PubMed ID: 27743629
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of ski geometry on aggressive ski behaviour and visual aesthetics: equipment designed to reduce risk of severe traumatic knee injuries in alpine giant slalom ski racing.
    Kröll J; Spörri J; Gilgien M; Schwameder H; Müller E
    Br J Sports Med; 2016 Jan; 50(1):20-5. PubMed ID: 26603647
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Factors that Influence the Performance of Elite Sprint Cross-Country Skiers.
    Hébert-Losier K; Zinner C; Platt S; Stöggl T; Holmberg HC
    Sports Med; 2017 Feb; 47(2):319-342. PubMed ID: 27334280
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ski Position during the Flight and Landing Preparation Phases in Ski Jumping Detected with Inertial Sensors.
    Bessone V; Petrat J; Schwirtz A
    Sensors (Basel); 2019 Jun; 19(11):. PubMed ID: 31174278
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A sit-ski design aimed at controlling centre of mass and inertia.
    Langelier E; Martel S; Millot A; Lessard JL; Smeesters C; Rancourt D
    J Sports Sci; 2013; 31(10):1064-73. PubMed ID: 23383968
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A system to measure the kinematics during the entire ski jump sequence using inertial sensors.
    Chardonnens J; Favre J; Cuendet F; Gremion G; Aminian K
    J Biomech; 2013 Jan; 46(1):56-62. PubMed ID: 23123073
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Measurement of the dynamics in ski jumping using a wearable inertial sensor-based system.
    Chardonnens J; Favre J; Cuendet F; Gremion G; Aminian K
    J Sports Sci; 2014; 32(6):591-600. PubMed ID: 24117224
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biomechanical determinants of cross-country skiing performance: A systematic review.
    Zoppirolli C; Hébert-Losier K; Holmberg HC; Pellegrini B
    J Sports Sci; 2020 Sep; 38(18):2127-2148. PubMed ID: 32552520
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biomechanics of optimal flight in ski-jumping.
    Remizov LP
    J Biomech; 1984; 17(3):167-71. PubMed ID: 6736053
    [TBL] [Abstract][Full Text] [Related]  

  • 39. After all, it is an outdoor sport: Meta-analytic evidence for negative associations between wind compensation points and round scores in ski jumping competitions.
    Pietschnig J; Pellegrini M; Eder JSN; Siegel M
    PLoS One; 2020; 15(8):e0238101. PubMed ID: 32834015
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A reappraisal of success factors for Olympic cross-country skiing.
    Sandbakk Ø; Holmberg HC
    Int J Sports Physiol Perform; 2014 Jan; 9(1):117-21. PubMed ID: 24088346
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.