These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 30689668)

  • 1. Isolation and characterization of two Acinetobacter species able to degrade 3-methylindole.
    Tesso TA; Zheng A; Cai H; Liu G
    PLoS One; 2019; 14(1):e0211275. PubMed ID: 30689668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Skatole remediation potential of Rhodopseudomonas palustris WKU-KDNS3 isolated from an animal waste lagoon.
    Sharma N; Doerner KC; Alok PC; Choudhary M
    Lett Appl Microbiol; 2015 Mar; 60(3):298-306. PubMed ID: 25495851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The roles of different porcine cytochrome P450 enzymes and cytochrome b5A in skatole metabolism.
    Wiercinska P; Lou Y; Squires EJ
    Animal; 2012 May; 6(5):834-45. PubMed ID: 22558931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolism and bioactivation of 3-methylindole by Clara cells, alveolar macrophages, and subcellular fractions from rabbit lungs.
    Thornton-Manning JR; Nichols WK; Manning BW; Skiles GL; Yost GS
    Toxicol Appl Pharmacol; 1993 Oct; 122(2):182-90. PubMed ID: 8212000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of energy or protein supplements containing monensin on ruminal 3-methylindole formation in pastured cattle.
    Potchoiba MJ; Nocerini MR; Carlson JR; Breeze RG
    Am J Vet Res; 1984 Jul; 45(7):1389-92. PubMed ID: 24049904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enrichment, isolation and characterization of pentachlorophenol degrading bacterium Acinetobacter sp. ISTPCP-3 from effluent discharge site.
    Sharma A; Thakur IS; Dureja P
    Biodegradation; 2009 Sep; 20(5):643-50. PubMed ID: 19214760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolism of 3-methylindole by porcine liver microsomes: responsible cytochrome P450 enzymes.
    Diaz GJ; Squires EJ
    Toxicol Sci; 2000 Jun; 55(2):284-92. PubMed ID: 10828259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Net absorption of 3-methylindole and indole in cattle after oral administration of L-tryptophan.
    Hammond AC; Huntington GB; Breeze RG
    Am J Vet Res; 1983 Nov; 44(11):2195-9. PubMed ID: 6650965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of ruminal degradation of L-tryptophan to 3-methylindole, in vitro.
    Hammond AC; Carlson JR
    J Anim Sci; 1980 Jul; 51(1):207-14. PubMed ID: 7410274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation of nitrite-degrading strains from Douchi and their application to degrade high nitrite in Jiangshui.
    Guo X; Liu B; Gao L; Zhou Y; Shan Y; Lü X
    J Sci Food Agric; 2019 Jan; 99(1):219-225. PubMed ID: 29855042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site of 3-methylindole and indole absorption in steers after ruminal administration of L-tryptophan.
    Hammond AC; Glenn BP; Huntington GB; Breeze RG
    Am J Vet Res; 1984 Jan; 45(1):171-4. PubMed ID: 6703452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation of a mercapturate adduct produced subsequent to glutathione conjugation of bioactivated 3-methylindole.
    Skiles GL; Smith DJ; Appleton ML; Carlson JR; Yost GS
    Toxicol Appl Pharmacol; 1991 May; 108(3):531-7. PubMed ID: 2020974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase II in vitro metabolism of 3-methylindole metabolites in porcine liver.
    Diaz GJ; Squires EJ
    Xenobiotica; 2003 May; 33(5):485-98. PubMed ID: 12746105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Duration of inhibition of 3-methylindole production by monensin.
    Honeyfield DC; Carlson JR; Nocerini MR; Breeze RG
    J Anim Sci; 1985 Jan; 60(1):226-31. PubMed ID: 3972743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation and identification of 3-hydroxy-3-methyloxindole, the major murine metabolite of 3-methylindole.
    Skiles GL; Adams JD; Yost GS
    Chem Res Toxicol; 1989; 2(4):254-9. PubMed ID: 2519781
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Concentration of 3-methylindole (3MI) and distribution of radioactivity from 14C-3MI in goat tissues associated with acute pulmonary edema.
    Bradley BJ; Carlson JR
    Life Sci; 1982 Feb; 30(5):455-63. PubMed ID: 7062807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of phase I metabolites of 3-methylindole produced by pig liver microsomes.
    Diaz GJ; Skordos KW; Yost GS; Squires EJ
    Drug Metab Dispos; 1999 Oct; 27(10):1150-6. PubMed ID: 10497141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of mixed-function oxidase in 3-methylindole-induced acute pulmonary edema in goats.
    Bray TM; Carlson JR
    Am J Vet Res; 1979 Sep; 40(9):1268-72. PubMed ID: 525930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of monensin and supplemental hay on ruminal 3-methylindole formation in adult cows after abrupt change to lush pasture.
    Potchoiba MJ; Carlson JR; Nocerini MR; Breeze RG
    Am J Vet Res; 1992 Jan; 53(1):129-33. PubMed ID: 1539904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adducts of 3-methylindole and glutathione: species differences in organ-selective bioactivation.
    Nocerini MR; Carlson JR; Yost GS
    Toxicol Lett; 1985 Nov; 28(2-3):79-87. PubMed ID: 4071564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.