These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 30690065)

  • 1. A drug refillable device for transscleral sustained drug delivery to the retina.
    Nagai N; Saijo S; Song Y; Kaji H; Abe T
    Eur J Pharm Biopharm; 2019 Mar; 136():184-191. PubMed ID: 30690065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transscleral Controlled Delivery of Geranylgeranylaceton Using a Polymeric Device Protects Rat Retina Against Light Injury.
    Nagai N; Kaji H; Nishizawa M; Nakazawa T; Abe T
    Adv Exp Med Biol; 2016; 854():471-7. PubMed ID: 26427448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Delivery from episcleral exoplants.
    Pontes de Carvalho RA; Krausse ML; Murphree AL; Schmitt EE; Campochiaro PA; Maumenee IH
    Invest Ophthalmol Vis Sci; 2006 Oct; 47(10):4532-9. PubMed ID: 17003449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of intraocular pressure (IOP) and choroidal circulation on controlled episcleral drug delivery to retina/vitreous.
    Li J; Lan B; Li X; Sun S; Lu P; Cheng L
    J Control Release; 2016 Dec; 243():78-85. PubMed ID: 27717742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of benzalkonium chloride on transscleral drug delivery.
    Okabe K; Kimura H; Okabe J; Kato A; Shimizu H; Ueda T; Shimada S; Ogura Y
    Invest Ophthalmol Vis Sci; 2005 Feb; 46(2):703-8. PubMed ID: 15671302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transscleral sustained vasohibin-1 delivery by a novel device suppressed experimentally-induced choroidal neovascularization.
    Onami H; Nagai N; Kaji H; Nishizawa M; Sato Y; Osumi N; Nakazawa T; Abe T
    PLoS One; 2013; 8(3):e58580. PubMed ID: 23472209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A multilayered sheet-type device capable of sustained drug release and deployment control.
    Sato Y; Nagai N; Abe T; Kaji H
    Biomed Microdevices; 2019 Jul; 21(3):60. PubMed ID: 31257546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of drug solubility and lipophilicity on transscleral retinal delivery of six corticosteroids.
    Thakur A; Kadam RS; Kompella UB
    Drug Metab Dispos; 2011 May; 39(5):771-81. PubMed ID: 21346004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transscleral drug delivery to the posterior eye: prospects of pharmacokinetic modeling.
    Ranta VP; Urtti A
    Adv Drug Deliv Rev; 2006 Nov; 58(11):1164-81. PubMed ID: 17069929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A polymeric device for controlled transscleral multi-drug delivery to the posterior segment of the eye.
    Nagai N; Kaji H; Onami H; Ishikawa Y; Nishizawa M; Osumi N; Nakazawa T; Abe T
    Acta Biomater; 2014 Feb; 10(2):680-7. PubMed ID: 24239899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Feasibility of drug delivery to the posterior pole of the rabbit eye with an episcleral implant.
    Kato A; Kimura H; Okabe K; Okabe J; Kunou N; Ogura Y
    Invest Ophthalmol Vis Sci; 2004 Jan; 45(1):238-44. PubMed ID: 14691179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of eye pigmentation on transscleral drug delivery.
    Cheruvu NP; Amrite AC; Kompella UB
    Invest Ophthalmol Vis Sci; 2008 Jan; 49(1):333-41. PubMed ID: 18172110
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Episcleral drug film for better-targeted ocular drug delivery and controlled release using multilayered poly-ε-caprolactone (PCL).
    Sun S; Li J; Li X; Lan B; Zhou S; Meng Y; Cheng L
    Acta Biomater; 2016 Jun; 37():143-54. PubMed ID: 27071973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of circulation on the disposition and ocular tissue distribution of 20 nm nanoparticles after periocular administration.
    Amrite AC; Edelhauser HF; Singh SR; Kompella UB
    Mol Vis; 2008 Jan; 14():150-60. PubMed ID: 18334929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transscleral sustained ranibizumab delivery using an episcleral implantable device: Suppression of laser-induced choroidal neovascularization in rats.
    Nagai N; Nezhad ZK; Daigaku R; Saijo S; Song Y; Terata K; Hoshi A; Nishizawa M; Nakazawa T; Kaji H; Abe T
    Int J Pharm; 2019 Aug; 567():118458. PubMed ID: 31247277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intraocular tissue distribution of betamethasone after intrascleral administration using a non-biodegradable sustained drug delivery device.
    Okabe K; Kimura H; Okabe J; Kato A; Kunou N; Ogura Y
    Invest Ophthalmol Vis Sci; 2003 Jun; 44(6):2702-7. PubMed ID: 12766076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ formation of injectable chitosan-gelatin hydrogels through double crosslinking for sustained intraocular drug delivery.
    Song Y; Nagai N; Saijo S; Kaji H; Nishizawa M; Abe T
    Mater Sci Eng C Mater Biol Appl; 2018 Jul; 88():1-12. PubMed ID: 29636124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of an ex vivo model implication for carrier-mediated retinal drug delivery.
    Kansara V; Mitra AK
    Curr Eye Res; 2006 May; 31(5):415-26. PubMed ID: 16714233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pharmacokinetic and Safety Evaluation of a Transscleral Sustained Unoprostone Release Device in Monkey Eyes.
    Nagai N; Yamada S; Kawasaki J; Koyanagi E; Saijo S; Kaji H; Nishizawa M; Nakazawa T; Abe T
    Invest Ophthalmol Vis Sci; 2018 Feb; 59(2):644-652. PubMed ID: 29392308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transscleral-RPE permeability of PEDF and ovalbumin proteins: implications for subconjunctival protein delivery.
    Amaral J; Fariss RN; Campos MM; Robison WG; Kim H; Lutz R; Becerra SP
    Invest Ophthalmol Vis Sci; 2005 Dec; 46(12):4383-92. PubMed ID: 16303924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.