These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 30690209)
1. Robocasting of Cu Ben-Arfa BAE; Neto S; Miranda Salvado IM; Pullar RC; Ferreira JMF Acta Biomater; 2019 Mar; 87():265-272. PubMed ID: 30690209 [TBL] [Abstract][Full Text] [Related]
2. Cytotoxicity and bioactivity assessments for Cu Ben-Arfa BAE; Palamá IE; Miranda Salvado IM; Ferreira JMF; Pullar RC J Biomed Mater Res A; 2019 Dec; 107(12):2680-2693. PubMed ID: 31390153 [TBL] [Abstract][Full Text] [Related]
3. 3D Printing of Macro Porous Sol-Gel Derived Bioactive Glass Scaffolds and Assessment of Biological Response. Bento R; Gaddam A; Oskoei P; Oliveira H; Ferreira JMF Materials (Basel); 2021 Oct; 14(20):. PubMed ID: 34683537 [TBL] [Abstract][Full Text] [Related]
4. Robocasting of Bioactive SiO Baino F; Barberi J; Fiume E; Orlygsson G; Massera J; Verné E J Healthc Eng; 2019; 2019():5153136. PubMed ID: 31098008 [TBL] [Abstract][Full Text] [Related]
5. Indirect rapid prototyping of sol-gel hybrid glass scaffolds for bone regeneration - Effects of organic crosslinker valence, content and molecular weight on mechanical properties. Hendrikx S; Kascholke C; Flath T; Schumann D; Gressenbuch M; Schulze FP; Hacker MC; Schulz-Siegmund M Acta Biomater; 2016 Apr; 35():318-29. PubMed ID: 26925964 [TBL] [Abstract][Full Text] [Related]
6. Antibacterial activity and biocompatibility of zein scaffolds containing silver-doped bioactive glass. El-Rashidy AA; Waly G; Gad A; Roether JA; Hum J; Yang Y; Detsch R; Hashem AA; Sami I; Goldmann WH; Boccaccini AR Biomed Mater; 2018 Aug; 13(6):065006. PubMed ID: 30088480 [TBL] [Abstract][Full Text] [Related]
7. PDLLA scaffolds with Cu- and Zn-doped bioactive glasses having multifunctional properties for bone regeneration. Bejarano J; Detsch R; Boccaccini AR; Palza H J Biomed Mater Res A; 2017 Mar; 105(3):746-756. PubMed ID: 27784135 [TBL] [Abstract][Full Text] [Related]
8. Biodegradable and adjustable sol-gel glass based hybrid scaffolds from multi-armed oligomeric building blocks. Kascholke C; Hendrikx S; Flath T; Kuzmenka D; Dörfler HM; Schumann D; Gressenbuch M; Schulze FP; Schulz-Siegmund M; Hacker MC Acta Biomater; 2017 Nov; 63():336-349. PubMed ID: 28927930 [TBL] [Abstract][Full Text] [Related]
9. Fabrication and characterization of sol-gel derived 45S5 Bioglass®-ceramic scaffolds. Chen QZ; Thouas GA Acta Biomater; 2011 Oct; 7(10):3616-26. PubMed ID: 21689791 [TBL] [Abstract][Full Text] [Related]
10. Highly degradable porous melt-derived bioactive glass foam scaffolds for bone regeneration. Nommeots-Nomm A; Labbaf S; Devlin A; Todd N; Geng H; Solanki AK; Tang HM; Perdika P; Pinna A; Ejeian F; Tsigkou O; Lee PD; Esfahani MHN; Mitchell CA; Jones JR Acta Biomater; 2017 Jul; 57():449-461. PubMed ID: 28457960 [TBL] [Abstract][Full Text] [Related]
11. Fabrication of hierarchically porous silk fibroin-bioactive glass composite scaffold via indirect 3D printing: Effect of particle size on physico-mechanical properties and in vitro cellular behavior. Bidgoli MR; Alemzadeh I; Tamjid E; Khafaji M; Vossoughi M Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109688. PubMed ID: 31349405 [TBL] [Abstract][Full Text] [Related]
12. Copper-releasing, boron-containing bioactive glass-based scaffolds coated with alginate for bone tissue engineering. Erol MM; Mouriňo V; Newby P; Chatzistavrou X; Roether JA; Hupa L; Boccaccini AR Acta Biomater; 2012 Feb; 8(2):792-801. PubMed ID: 22040685 [TBL] [Abstract][Full Text] [Related]
13. Bioactivity of gel-glass powders in the CaO-SiO2 system: a comparison with ternary (CaO-P2O5-SiO2) and quaternary glasses (SiO2-CaO-P2O5-Na2O). Saravanapavan P; Jones JR; Pryce RS; Hench LL J Biomed Mater Res A; 2003 Jul; 66(1):110-9. PubMed ID: 12833437 [TBL] [Abstract][Full Text] [Related]
14. Optimization of composition, structure and mechanical strength of bioactive 3-D glass-ceramic scaffolds for bone substitution. Baino F; Ferraris M; Bretcanu O; Verné E; Vitale-Brovarone C J Biomater Appl; 2013 Mar; 27(7):872-90. PubMed ID: 22207602 [TBL] [Abstract][Full Text] [Related]
15. Phosphate glass fibre scaffolds: Tailoring of the properties and enhancement of the bioactivity through mesoporous glass particles. Novajra G; Boetti NG; Lousteau J; Fiorilli S; Milanese D; Vitale-Brovarone C Mater Sci Eng C Mater Biol Appl; 2016 Oct; 67():570-580. PubMed ID: 27287156 [TBL] [Abstract][Full Text] [Related]
16. Antibacterial effect of 3D printed mesoporous bioactive glass scaffolds doped with metallic silver nanoparticles. Sánchez-Salcedo S; García A; González-Jiménez A; Vallet-Regí M Acta Biomater; 2023 Jan; 155():654-666. PubMed ID: 36332875 [TBL] [Abstract][Full Text] [Related]
17. Incorporation of sol-gel bioactive glass into PLGA improves mechanical properties and bioactivity of composite scaffolds and results in their osteoinductive properties. Filipowska J; Pawlik J; Cholewa-Kowalska K; Tylko G; Pamula E; Niedzwiedzki L; Szuta M; Laczka M; Osyczka AM Biomed Mater; 2014 Oct; 9(6):065001. PubMed ID: 25329328 [TBL] [Abstract][Full Text] [Related]
18. Robocasting of SiO Barberi J; Baino F; Fiume E; Orlygsson G; Nommeots-Nomm A; Massera J; Verné E Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31443540 [No Abstract] [Full Text] [Related]
19. Studies on effect of CuO addition on mechanical properties and in vitro cytocompatibility in 1393 bioactive glass scaffold. Ali A; Ershad M; Vyas VK; Hira SK; Manna PP; Singh BN; Yadav S; Srivastava P; Singh SP; Pyare R Mater Sci Eng C Mater Biol Appl; 2018 Dec; 93():341-355. PubMed ID: 30274066 [TBL] [Abstract][Full Text] [Related]
20. Reinforcing 13-93 bioglass scaffolds fabricated by robocasting and pressureless spark plasma sintering with graphene oxide. Motealleh A; Eqtesadi S; Perera FH; Ortiz AL; Miranda P; Pajares A; Wendelbo R J Mech Behav Biomed Mater; 2019 Sep; 97():108-116. PubMed ID: 31103928 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]