BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 30690352)

  • 1. Regulatory mechanisms underlying the maintenance of homeostasis in Pyropia haitanensis under hypersaline stress conditions.
    Wang W; Xu Y; Chen T; Xing L; Xu K; Xu Y; Ji D; Chen C; Xie C
    Sci Total Environ; 2019 Apr; 662():168-179. PubMed ID: 30690352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insight into transketolase of Pyropia haitanensis under desiccation stress based on integrative analysis of omics and transformation.
    Shi J; Wang W; Lin Y; Xu K; Xu Y; Ji D; Chen C; Xie C
    BMC Plant Biol; 2019 Nov; 19(1):475. PubMed ID: 31694541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptomic study to understand thermal adaptation in a high temperature-tolerant strain of Pyropia haitanensis.
    Wang W; Teng F; Lin Y; Ji D; Xu Y; Chen C; Xie C
    PLoS One; 2018; 13(4):e0195842. PubMed ID: 29694388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide expression profiles of Pyropia haitanensis in response to osmotic stress by using deep sequencing technology.
    Wang L; Mao Y; Kong F; Cao M; Sun P
    BMC Genomics; 2015 Nov; 16():1012. PubMed ID: 26611675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene expression profiles of Pyropia yezoensis in response to dehydration and rehydration stresses.
    Sun P; Tang X; Bi G; Xu K; Kong F; Mao Y
    Mar Genomics; 2019 Feb; 43():43-49. PubMed ID: 30279127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Na
    Chen Q; Xu K; Xu Y; Ji D; Chen C; Xie C; Wang W
    Front Plant Sci; 2022; 13():1040142. PubMed ID: 36684749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Putative trehalose biosynthesis proteins function as differential floridoside-6-phosphate synthases to participate in the abiotic stress response in the red alga Pyropia haitanensis.
    Sun M; Zhu Z; Chen J; Yang R; Luo Q; Wu W; Yan X; Chen H
    BMC Plant Biol; 2019 Jul; 19(1):325. PubMed ID: 31324146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptional analysis of renal dopamine-mediated Na
    Su M; Zhou J; Duan Z; Zhang J
    BMC Genomics; 2019 May; 20(1):418. PubMed ID: 31126236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Allelopathic inhibitory effect of the macroalga Pyropia haitanensis (Rhodophyta) on harmful bloom-forming Pseudo-nitzschia species.
    Patil V; Abate R; Wu W; Zhang J; Lin H; Chen C; Liang J; Sun L; Li X; Li Y; Gao Y
    Mar Pollut Bull; 2020 Dec; 161(Pt A):111752. PubMed ID: 33091839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the global transcriptome for Pyropia haitanensis (Bangiales, Rhodophyta) and development of cSSR markers.
    Xie C; Li B; Xu Y; Ji D; Chen C
    BMC Genomics; 2013 Feb; 14():107. PubMed ID: 23414227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional Characterization and Evolutionary Analysis of Glycine-Betaine Biosynthesis Pathway in Red Seaweed
    Mao Y; Chen N; Cao M; Chen R; Guan X; Wang D
    Mar Drugs; 2019 Jan; 17(1):. PubMed ID: 30669580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NADPH from the oxidative pentose phosphate pathway drives the operation of cyclic electron flow around photosystem I in high-intertidal macroalgae under severe salt stress.
    Lu X; Huan L; Gao S; He L; Wang G
    Physiol Plant; 2016 Apr; 156(4):397-406. PubMed ID: 26337725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential Proteomic Analysis by iTRAQ Reveals the Mechanism of Pyropia haitanensis Responding to High Temperature Stress.
    Shi J; Chen Y; Xu Y; Ji D; Chen C; Xie C
    Sci Rep; 2017 Mar; 7():44734. PubMed ID: 28303955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The response of Pyropia haitanensis to inorganic arsenic under laboratory culture.
    Zhao R; Xie CT; Xu Y; Ji DH; Chen CS; Ye J; Xue XM; Wang WL
    Chemosphere; 2020 Dec; 261():128160. PubMed ID: 33113648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide analysis of HSP70 gene superfamily in Pyropia yezoensis (Bangiales, Rhodophyta): identification, characterization and expression profiles in response to dehydration stress.
    Yu X; Mo Z; Tang X; Gao T; Mao Y
    BMC Plant Biol; 2021 Sep; 21(1):435. PubMed ID: 34560838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased iron availability resulting from increased CO
    Chen B; Zou D; Yang Y
    Chemosphere; 2017 Apr; 173():444-451. PubMed ID: 28131089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular cloning and expression analysis of two key genes, HDS and HDR, in the MEP pathway in Pyropia haitanensis.
    He Y; Yan Z; Du Y; Ma Y; Shen S
    Sci Rep; 2017 Dec; 7(1):17499. PubMed ID: 29235494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A chromosome-level genome assembly of Pyropia haitanensis (Bangiales, Rhodophyta).
    Cao M; Xu K; Yu X; Bi G; Liu Y; Kong F; Sun P; Tang X; Du G; Ge Y; Wang D; Mao Y
    Mol Ecol Resour; 2020 Jan; 20(1):216-227. PubMed ID: 31600851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The impact of elevated atmospheric CO
    Ma H; Zou D; Wen J; Ji Z; Gong J; Liu C
    Environ Sci Pollut Res Int; 2018 Nov; 25(33):33361-33369. PubMed ID: 30259325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of benthic and planktonic diatoms on the growth and biochemical composition of the commercial macroalga Pyropia haitanensis.
    Patil V; Sun L; Mohite V; Liang J; Wang D; Gao Y; Chen C
    Mar Pollut Bull; 2024 Jun; 203():116411. PubMed ID: 38733890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.