These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 30690365)
21. [Spatial distribution pattern and stock estimation of nutrients during bloom season in Lake Taihu]. Jin YW; Zhu GW; Xu H; Zhu MY Huan Jing Ke Xue; 2015 Mar; 36(3):936-45. PubMed ID: 25929061 [TBL] [Abstract][Full Text] [Related]
22. Quantifying the dependence of cyanobacterial growth to nutrient for the eutrophication management of temperate-subtropical shallow lakes. Zou W; Zhu G; Cai Y; Xu H; Zhu M; Gong Z; Zhang Y; Qin B Water Res; 2020 Jun; 177():115806. PubMed ID: 32311578 [TBL] [Abstract][Full Text] [Related]
23. Dredging mitigates cyanobacterial bloom in eutrophic Lake Nanhu: Shifts in associations between the bacterioplankton community and sediment biogeochemistry. Wan W; Zhang Y; Cheng G; Li X; Qin Y; He D Environ Res; 2020 Sep; 188():109799. PubMed ID: 32798942 [TBL] [Abstract][Full Text] [Related]
24. Hepatotoxic cyanobacterial blooms in the lakes of northern Poland. Mankiewicz J; Komárková J; Izydorczyk K; Jurczak T; Tarczynska M; Zalewski M Environ Toxicol; 2005 Oct; 20(5):499-506. PubMed ID: 16161103 [TBL] [Abstract][Full Text] [Related]
25. Cyanobacterial blooms: statistical models describing risk factors for national-scale lake assessment and lake management. Carvalho L; Miller nee Ferguson CA; Scott EM; Codd GA; Davies PS; Tyler AN Sci Total Environ; 2011 Nov; 409(24):5353-8. PubMed ID: 21975001 [TBL] [Abstract][Full Text] [Related]
26. Mitigating cyanobacterial harmful algal blooms in aquatic ecosystems impacted by climate change and anthropogenic nutrients. Paerl HW; Gardner WS; Havens KE; Joyner AR; McCarthy MJ; Newell SE; Qin B; Scott JT Harmful Algae; 2016 Apr; 54():213-222. PubMed ID: 28073478 [TBL] [Abstract][Full Text] [Related]
27. Accuracy of data buoys for measurement of cyanobacteria, chlorophyll, and turbidity in a large lake (Lake Erie, North America): implications for estimation of cyanobacterial bloom parameters from water quality sonde measurements. Chaffin JD; Kane DD; Stanislawczyk K; Parker EM Environ Sci Pollut Res Int; 2018 Sep; 25(25):25175-25189. PubMed ID: 29943249 [TBL] [Abstract][Full Text] [Related]
28. Spatial and temporal variability in the nitrogen cyclers of hypereutrophic Lake Taihu. Krausfeldt LE; Tang X; van de Kamp J; Gao G; Bodrossy L; Boyer GL; Wilhelm SW FEMS Microbiol Ecol; 2017 Apr; 93(4):. PubMed ID: 28334116 [TBL] [Abstract][Full Text] [Related]
29. Periphyton effects on bacterial assemblages and harmful cyanobacterial blooms in a eutrophic freshwater lake: a mesocosm study. Cui Y; Jin L; Ko SR; Chun SJ; Oh HS; Lee CS; Srivastava A; Oh HM; Ahn CY Sci Rep; 2017 Aug; 7(1):7827. PubMed ID: 28798489 [TBL] [Abstract][Full Text] [Related]
30. Harmful freshwater algal blooms, with an emphasis on cyanobacteria. Paerl HW; Fulton RS; Moisander PH; Dyble J ScientificWorldJournal; 2001 Apr; 1():76-113. PubMed ID: 12805693 [TBL] [Abstract][Full Text] [Related]
31. Phosphorus Accumulation in Extracellular Polymeric Substances (EPS) of Colony-Forming Cyanobacteria Challenges Imbalanced Nutrient Reduction Strategies in Eutrophic Lakes. Duan Z; Tan X; Shi L; Zeng Q; Ali I; Zhu R; Chen H; Parajuli K Environ Sci Technol; 2023 Jan; 57(4):1600-1612. PubMed ID: 36642923 [TBL] [Abstract][Full Text] [Related]
32. Nutrients and not temperature are the key drivers for cyanobacterial biomass in the Americas. Bonilla S; Aguilera A; Aubriot L; Huszar V; Almanza V; Haakonsson S; Izaguirre I; O'Farrell I; Salazar A; Becker V; Cremella B; Ferragut C; Hernandez E; Palacio H; Rodrigues LC; Sampaio da Silva LH; Santana LM; Santos J; Somma A; Ortega L; Antoniades D Harmful Algae; 2023 Jan; 121():102367. PubMed ID: 36639186 [TBL] [Abstract][Full Text] [Related]
34. Environmental factors driving the occurrence of the invasive cyanobacterium Sphaerospermopsis aphanizomenoides (Nostocales) in temperate lakes. Budzyńska A; Rosińska J; Pełechata A; Toporowska M; Napiórkowska-Krzebietke A; Kozak A; Messyasz B; Pęczuła W; Kokociński M; Szeląg-Wasielewska E; Grabowska M; Mądrecka B; Niedźwiecki M; Alcaraz Parraga P; Pełechaty M; Karpowicz M; Pawlik-Skowrońska B Sci Total Environ; 2019 Feb; 650(Pt 1):1338-1347. PubMed ID: 30308820 [TBL] [Abstract][Full Text] [Related]
35. Fenced cultivation of water hyacinth for cyanobacterial bloom control. Qin H; Zhang Z; Liu H; Li D; Wen X; Zhang Y; Wang Y; Yan S Environ Sci Pollut Res Int; 2016 Sep; 23(17):17742-52. PubMed ID: 27246563 [TBL] [Abstract][Full Text] [Related]
36. Effects of increasing nitrogen and phosphorus concentrations on phytoplankton community growth and toxicity during Planktothrix blooms in Sandusky Bay, Lake Erie. Davis TW; Bullerjahn GS; Tuttle T; McKay RM; Watson SB Environ Sci Technol; 2015 Jun; 49(12):7197-207. PubMed ID: 25992592 [TBL] [Abstract][Full Text] [Related]
37. [Response Characteristics of Algal Chlorophyll-a to Nitrogen, Phosphorus and Water Temperature in Lake Erhai Based on Quantile Regression]. Chen XH; Li XP; Qian XY; Hu SQ Huan Jing Ke Xue; 2017 Jan; 38(1):113-120. PubMed ID: 29965037 [TBL] [Abstract][Full Text] [Related]
38. Effects of nutrient temporal variations on toxic genotype and microcystin concentration in two eutrophic lakes. Wang M; Shi W; Chen Q; Zhang J; Yi Q; Hu L Ecotoxicol Environ Saf; 2018 Dec; 166():192-199. PubMed ID: 30269014 [TBL] [Abstract][Full Text] [Related]
39. Cyanobacterial community succession and associated cyanotoxin production in hypereutrophic and eutrophic freshwaters. Tanvir RU; Hu Z; Zhang Y; Lu J Environ Pollut; 2021 Dec; 290():118056. PubMed ID: 34488165 [TBL] [Abstract][Full Text] [Related]
40. Elucidating controls on cyanobacteria bloom timing and intensity via Bayesian mechanistic modeling. Del Giudice D; Fang S; Scavia D; Davis TW; Evans MA; Obenour DR Sci Total Environ; 2021 Feb; 755(Pt 1):142487. PubMed ID: 33035987 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]