These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
350 related articles for article (PubMed ID: 30690370)
21. Complex drought patterns robustly explain global yield loss for major crops. Santini M; Noce S; Antonelli M; Caporaso L Sci Rep; 2022 Apr; 12(1):5792. PubMed ID: 35388057 [TBL] [Abstract][Full Text] [Related]
22. The combined and separate impacts of climate extremes on the current and future US rainfed maize and soybean production under elevated CO Jin Z; Zhuang Q; Wang J; Archontoulis SV; Zobel Z; Kotamarthi VR Glob Chang Biol; 2017 Jul; 23(7):2687-2704. PubMed ID: 28063186 [TBL] [Abstract][Full Text] [Related]
23. Maize yields over Europe may increase in spite of climate change, with an appropriate use of the genetic variability of flowering time. Parent B; Leclere M; Lacube S; Semenov MA; Welcker C; Martre P; Tardieu F Proc Natl Acad Sci U S A; 2018 Oct; 115(42):10642-10647. PubMed ID: 30275304 [TBL] [Abstract][Full Text] [Related]
24. Translating large-scale climate variability into crop production forecast in Europe. Guimarães Nobre G; Hunink JE; Baruth B; Aerts JCJH; Ward PJ Sci Rep; 2019 Feb; 9(1):1277. PubMed ID: 30718693 [TBL] [Abstract][Full Text] [Related]
25. The shifting influence of drought and heat stress for crops in northeast Australia. Lobell DB; Hammer GL; Chenu K; Zheng B; McLean G; Chapman SC Glob Chang Biol; 2015 Nov; 21(11):4115-27. PubMed ID: 26152643 [TBL] [Abstract][Full Text] [Related]
26. Crop yield sensitivity of global major agricultural countries to droughts and the projected changes in the future. Leng G; Hall J Sci Total Environ; 2019 Mar; 654():811-821. PubMed ID: 30448671 [TBL] [Abstract][Full Text] [Related]
27. Impact of climate extreme events and their causality on maize yield in South Africa. Simanjuntak C; Gaiser T; Ahrends HE; Ceglar A; Singh M; Ewert F; Srivastava AK Sci Rep; 2023 Aug; 13(1):12462. PubMed ID: 37528122 [TBL] [Abstract][Full Text] [Related]
28. Uncertainties of potentials and recent changes in global yields of major crops resulting from census- and satellite-based yield datasets at multiple resolutions. Iizumi T; Kotoku M; Kim W; West PC; Gerber JS; Brown ME PLoS One; 2018; 13(9):e0203809. PubMed ID: 30235237 [TBL] [Abstract][Full Text] [Related]
29. Greater sensitivity to drought accompanies maize yield increase in the U.S. Midwest. Lobell DB; Roberts MJ; Schlenker W; Braun N; Little BB; Rejesus RM; Hammer GL Science; 2014 May; 344(6183):516-9. PubMed ID: 24786079 [TBL] [Abstract][Full Text] [Related]
30. The role of climate in the trend and variability of Ethiopia's cereal crop yields. Yang M; Wang G; Ahmed KF; Adugna B; Eggen M; Atsbeha E; You L; Koo J; Anagnostou E Sci Total Environ; 2020 Jun; 723():137893. PubMed ID: 32220729 [TBL] [Abstract][Full Text] [Related]
31. [Validation of the ALMANAC model with different spatial scale]. Xie Y; James K; Liu B Ying Yong Sheng Tai Xue Bao; 2003 Aug; 14(8):1291-5. PubMed ID: 14655361 [TBL] [Abstract][Full Text] [Related]
32. Vulnerability of maize, millet, and rice yields to growing season precipitation and socio-economic proxies in Cameroon. Epule TE; Chehbouni A; Dhiba D; Etongo D; Driouech F; Brouziyne Y; Peng C PLoS One; 2021; 16(6):e0252335. PubMed ID: 34106980 [TBL] [Abstract][Full Text] [Related]
33. ENSO and PDO-related climate variability impacts on Midwestern United States crop yields. Henson C; Market P; Lupo A; Guinan P Int J Biometeorol; 2017 May; 61(5):857-867. PubMed ID: 27787628 [TBL] [Abstract][Full Text] [Related]
34. The central trend in crop yields under climate change in China: A systematic review. Liu Y; Li N; Zhang Z; Huang C; Chen X; Wang F Sci Total Environ; 2020 Feb; 704():135355. PubMed ID: 31812435 [TBL] [Abstract][Full Text] [Related]
35. Climate change has likely already affected global food production. Ray DK; West PC; Clark M; Gerber JS; Prishchepov AV; Chatterjee S PLoS One; 2019; 14(5):e0217148. PubMed ID: 31150427 [TBL] [Abstract][Full Text] [Related]
36. Climate variability impacts on rainfed cereal yields in west and northwest Iran. Nouri M; Homaee M; Bannayan M Int J Biometeorol; 2017 Sep; 61(9):1571-1583. PubMed ID: 28421270 [TBL] [Abstract][Full Text] [Related]
37. Drought risk in Moldova under global warming and possible crop adaptation strategies. Vicente-Serrano SM; Juez C; Potopová V; Boincean B; Murphy C; Domínguez-Castro F; Eklundh L; Peña-Angulo D; Noguera I; Jin H; Conradt T; Garcia-Herrera R; Garrido-Perez JM; Barriopedro D; Gutiérrez JM; Iturbide M; Lorenzo-Lacruz J; Kenawy AE Ann N Y Acad Sci; 2024 Aug; 1538(1):144-161. PubMed ID: 39086254 [TBL] [Abstract][Full Text] [Related]
38. Analysis of South American climate and teleconnection indices. Zhang C; Huang G; Yan D; Wang H; Zeng G; Wang S; Li Y J Contam Hydrol; 2022 Jan; 244():103915. PubMed ID: 34788718 [TBL] [Abstract][Full Text] [Related]
39. Characterizing drought stress and trait influence on maize yield under current and future conditions. Harrison MT; Tardieu F; Dong Z; Messina CD; Hammer GL Glob Chang Biol; 2014 Mar; 20(3):867-78. PubMed ID: 24038882 [TBL] [Abstract][Full Text] [Related]
40. Intra-growing season dry-wet spell pattern is a pivotal driver of maize yield variability in sub-Saharan Africa. Marcos-Garcia P; Carmona-Moreno C; Pastori M Nat Food; 2024 Sep; 5(9):775-786. PubMed ID: 39285262 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]