These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 30690382)

  • 1. Ecotoxicity assessment of boreal lake sediments affected by metal mining: Sediment quality triad approach complemented with metal bioavailability and body residue studies.
    Väänänen K; Abel S; Oksanen T; Nybom I; Leppänen MT; Asikainen H; Rasilainen M; Karjalainen AK; Akkanen J
    Sci Total Environ; 2019 Apr; 662():88-98. PubMed ID: 30690382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using a Sediment Quality Triad approach to evaluate benthic toxicity in the Lower Hackensack River, New Jersey.
    Sorensen MT; Conder JM; Fuchsman PC; Martello LB; Wenning RJ
    Arch Environ Contam Toxicol; 2007 Jul; 53(1):36-49. PubMed ID: 17464441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distribution and Bioavailability of Trace Metals in Shallow Sediments from Grand Lake, Oklahoma.
    Morrison S; Nikolai S; Townsend D; Belden J
    Arch Environ Contam Toxicol; 2019 Jan; 76(1):31-41. PubMed ID: 30229368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biological and chemical characterization of metal bioavailability in sediments from Lake Roosevelt, Columbia River, Washington, USA.
    Besser JM; Brumbaugh WG; Ivey CD; Ingersoll CG; Moran PW
    Arch Environ Contam Toxicol; 2008 May; 54(4):557-70. PubMed ID: 18060524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chronic toxicity of copper to five benthic invertebrates in laboratory-formulated sediment: sensitivity comparison and preliminary risk assessment.
    Roman YE; De Schamphelaere KA; Nguyen LT; Janssen CR
    Sci Total Environ; 2007 Nov; 387(1-3):128-40. PubMed ID: 17631947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Weight-of-evidence approach in assessment of ecotoxicological risks of acid sulphate soils in the Baltic Sea river estuaries.
    Wallin J; Karjalainen AK; Schultz E; Järvistö J; Leppänen M; Vuori KM
    Sci Total Environ; 2015 Mar; 508():452-61. PubMed ID: 25506908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laboratory toxicity and benthic invertebrate field colonization of Upper Columbia River sediments: finding adverse effects using multiple lines of evidence.
    Fairchild JF; Kemble NE; Allert AL; Brumbaugh WG; Ingersoll CG; Dowling B; Gruenenfelder C; Roland JL
    Arch Environ Contam Toxicol; 2012 Jul; 63(1):54-68. PubMed ID: 22402778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ecological risk assessment of boreal sediments affected by metal mining: Metal geochemistry, seasonality, and comparison of several risk assessment methods.
    Väänänen K; Kauppila T; Mäkinen J; Leppänen MT; Lyytikäinen M; Akkanen J
    Integr Environ Assess Manag; 2016 Oct; 12(4):759-71. PubMed ID: 26695003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioavailability and Chronic Toxicity of Metal Sulfide Minerals to Benthic Marine Invertebrates: Implications for Deep Sea Exploration, Mining and Tailings Disposal.
    Simpson SL; Spadaro DA
    Environ Sci Technol; 2016 Apr; 50(7):4061-70. PubMed ID: 26937684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterizing toxicity of metal-contaminated sediments from the Upper Columbia River, Washington, USA, to benthic invertebrates.
    Besser JM; Steevens J; Kunz JL; Brumbaugh WG; Ingersoll CG; Cox S; Mebane C; Balistrieri L; Sinclair J; MacDonald D
    Environ Toxicol Chem; 2018 Dec; 37(12):3102-3114. PubMed ID: 30239039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution of trace metallic elements to weakly contaminated lacustrine sediments: effects on benthic and pelagic organisms through multi-species laboratory bioassays.
    Lécrivain N; Frossard V; Clément B
    Ecotoxicology; 2019 Mar; 28(2):154-166. PubMed ID: 30734194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving sediment-quality guidelines for nickel: development and application of predictive bioavailability models to assess chronic toxicity of nickel in freshwater sediments.
    Vangheluwe ML; Verdonck FA; Besser JM; Brumbaugh WG; Ingersoll CG; Schlekat CE; Garman ER
    Environ Toxicol Chem; 2013 Nov; 32(11):2507-19. PubMed ID: 23983116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toxicological effects of short-term resuspension of metal-contaminated freshwater and marine sediments.
    Fetters KJ; Costello DM; Hammerschmidt CR; Burton GA
    Environ Toxicol Chem; 2016 Mar; 35(3):676-86. PubMed ID: 26313755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toxicity risk assessment of mercury, DDT and arsenic legacy pollution in sediments: A triad approach under low concentration conditions.
    Marziali L; Rosignoli F; Drago A; Pascariello S; Valsecchi L; Rossaro B; Guzzella L
    Sci Total Environ; 2017 Sep; 593-594():809-821. PubMed ID: 28371758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chronic toxicity of nickel-spiked freshwater sediments: variation in toxicity among eight invertebrate taxa and eight sediments.
    Besser JM; Brumbaugh WG; Ingersoll CG; Ivey CD; Kunz JL; Kemble NE; Schlekat CE; Garman ER
    Environ Toxicol Chem; 2013 Nov; 32(11):2495-506. PubMed ID: 23657897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparisons Between Laboratory Sediment Toxicity Test Results and Assessment of Benthic Community Changes for a Lake with Mild Metal Contamination.
    Oguma AY; Klerks PL
    Arch Environ Contam Toxicol; 2020 Jan; 78(1):106-116. PubMed ID: 31754868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distribution, diffusive fluxes, and toxicity of heavy metals and PAHs in pore water profiles from the northern bays of Taihu Lake.
    Lei P; Zhang H; Shan B; Zhang B
    Environ Sci Pollut Res Int; 2016 Nov; 23(21):22072-22083. PubMed ID: 27541153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Lumbriculus variegatus (Annelida, Oligochaete) bioturbation on zinc sediment chemistry and toxicity to the epi-benthic invertebrate Chironomus tepperi (Diptera: Chironomidae).
    Colombo V; Pettigrove VJ; Hoffmann AA; Golding LA
    Environ Pollut; 2016 Sep; 216():198-207. PubMed ID: 27262133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Baseline ecological risk assessment of the Calcasieu Estuary, Louisiana: Part 3. An evaluation of the risks to benthic invertebrates associated with exposure to contaminated sediments.
    MacDonald DD; Ingersoll CG; Kemble NE; Smorong DE; Sinclair JA; Lindskoog R; Gaston G; Sanger D; Carr RS; Biedenbach J; Gouguet R; Kern J; Shortelle A; Field LJ; Meyer J
    Arch Environ Contam Toxicol; 2011 Jul; 61(1):29-58. PubMed ID: 21442248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of sediment ecotoxicological status as a complementary tool for the evaluation of surface water quality: the Ebro river basin case study.
    Roig N; Sierra J; Nadal M; Moreno-Garrido I; Nieto E; Hampel M; Gallego EP; Schuhmacher M; Blasco J
    Sci Total Environ; 2015 Jan; 503-504():269-78. PubMed ID: 25046984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.