BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 30690434)

  • 1. CMOS stimulating chips capable of wirelessly driving 473 electrodes for a cortical vision prosthesis.
    Wong YT; Feleppa T; Mohan A; Browne D; Szlawski J; Rosenfeld JV; Lowery A
    J Neural Eng; 2019 Apr; 16(2):026025. PubMed ID: 30690434
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tissue response to a chronically implantable wireless intracortical visual prosthesis (Gennaris array).
    Rosenfeld JV; Wong YT; Yan E; Szlawski J; Mohan A; Clark JC; Rosa M; Lowery A
    J Neural Eng; 2020 Jul; 17(4):046001. PubMed ID: 32554869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Microbead: A Highly Miniaturized Wirelessly Powered Implantable Neural Stimulating System.
    Khalifa A; Karimi Y; Wang Q; Garikapati S; Montlouis W; Stanacevic M; Thakor N; Etienne-Cummings R
    IEEE Trans Biomed Circuits Syst; 2018 Jun; 12(3):521-531. PubMed ID: 29877816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Miniature electroparticle-cuff for wireless peripheral neuromodulation.
    Hernandez-Reynoso AG; Nandam S; O'Brien JM; Kanneganti A; Cogan SF; Freeman DK; Romero-Ortega MI
    J Neural Eng; 2019 Aug; 16(4):046002. PubMed ID: 31018187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Approaches to a cortical vision prosthesis: implications of electrode size and placement.
    Christie BP; Ashmont KR; House PA; Greger B
    J Neural Eng; 2016 Apr; 13(2):025003. PubMed ID: 26905379
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monolithically Defined Wireless Fully Implantable Nervous System Interfaces.
    Gutruf P
    Acc Chem Res; 2024 May; 57(9):1275-1286. PubMed ID: 38608256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fully Passive Flexible Wireless Neural Recorder for the Acquisition of Neuropotentials from a Rat Model.
    Liu S; Moncion C; Zhang J; Balachandar L; Kwaku D; Riera JJ; Volakis JL; Chae J
    ACS Sens; 2019 Dec; 4(12):3175-3185. PubMed ID: 31670508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Microbead: A 0.009 mm
    Khalifa A; Liu Y; Karimi Y; Wang Q; Eisape A; Stanacevic M; Thakor N; Bao Z; Etienne-Cummings R
    IEEE Trans Biomed Circuits Syst; 2019 Oct; 13(5):971-985. PubMed ID: 31484132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MEMS-based system and image processing strategy for epiretinal prosthesis.
    Xia P; Hu J; Qi J; Gu C; Peng Y
    Biomed Mater Eng; 2015; 26 Suppl 1():S1257-63. PubMed ID: 26405885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laser Driven Miniature Diamond Implant for Wireless Retinal Prostheses.
    Ahnood A; Cheriton R; Bruneau A; Belcourt JA; Ndabakuranye JP; Lemaire W; Hilkes R; Fontaine R; Cook JPD; Hinzer K; Prawer S
    Adv Biosyst; 2020 Nov; 4(11):e2000055. PubMed ID: 33084251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-Power BPSK Inductive Data Link for an Implanted Intracortical Visual Prosthesis.
    Omisakin A; Mestrom R; Bentum M
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1-5. PubMed ID: 31945830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cortical activation via an implanted wireless retinal prosthesis.
    Walter P; Kisvárday ZF; Görtz M; Alteheld N; Rossler G; Stieglitz T; Eysel UT
    Invest Ophthalmol Vis Sci; 2005 May; 46(5):1780-5. PubMed ID: 15851582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enabling wireless powering and telemetry for peripheral nerve implants.
    Jegadeesan R; Nag S; Agarwal K; Thakor NV; Guo YX
    IEEE J Biomed Health Inform; 2015 May; 19(3):958-70. PubMed ID: 25910261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intracortical current steering shifts the location of evoked neural activity.
    Meikle SJ; Hagan MA; Price NSC; Wong YT
    J Neural Eng; 2022 Jun; 19(3):. PubMed ID: 35688125
    [No Abstract]   [Full Text] [Related]  

  • 15. Ultrananocrystalline diamond-CMOS device integration route for high acuity retinal prostheses.
    Ahnood A; Escudie MC; Cicione R; Abeyrathne CD; Ganesan K; Fox KE; Garrett DJ; Stacey A; Apollo NV; Lichter SG; Thomas CD; Tran N; Meffin H; Prawer S
    Biomed Microdevices; 2015; 17(3):9952. PubMed ID: 25877379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Wireless Optogenetic Headstage with Multichannel Electrophysiological Recording Capability.
    Gagnon-Turcotte G; Kisomi AA; Ameli R; Camaro CO; LeChasseur Y; Néron JL; Bareil PB; Fortier P; Bories C; de Koninck Y; Gosselin B
    Sensors (Basel); 2015 Sep; 15(9):22776-97. PubMed ID: 26371006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transscleral implantation and neurophysiological testing of subretinal polyimide film electrodes in the domestic pig in visual prosthesis development.
    Sachs HG; Schanze T; Brunner U; Sailer H; Wiesenack C
    J Neural Eng; 2005 Mar; 2(1):S57-64. PubMed ID: 15876656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An ASIC for Recording and Stimulation in Stacked Microchannel Neural Interfaces.
    Lancashire HT; Jiang D; Demosthenous A; Donaldson N
    IEEE Trans Biomed Circuits Syst; 2019 Apr; 13(2):259-270. PubMed ID: 30624225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of simple wireless neurostimulators and sensors.
    Gulick DW; Towe BC
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3130-3. PubMed ID: 25570654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A power efficient electronic implant for a visual cortical neuroprosthesis.
    Coulombe J; Carniguian S; Sawan M
    Artif Organs; 2005 Mar; 29(3):233-8. PubMed ID: 15725224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.